
Automatic Generation of Jump
Links in Arbitrary 3D

Environments for Navigation
Meshes

Diplomarbeit

zur Erlangung des akademischen Grades
Diplominformatikerin

Humboldt-Universität zu Berlin
Mathematisch-Naturwissenschaftliche Fakultät II

Institut für Informatik

eingereicht von: Sara Budde
geboren am: 22.10.1981
in: Iserlohn

Gutachter: Prof. Dr.-Ing. Peter Eisert
Prof. Dr.-Ing. David Strippgen

eingereicht am: verteidigt am:

Abstract

This thesis presents a robust solution for the generation of jump
link data for virtual agents in arbitrary three-dimensional envi-
ronments. This jump link data will be integrated into the nav-
igation mesh data structure by designing a smart data model
that fits the logic of the navigation mesh as well as the dynamic
nature of the jump data. The developed methods will be shown
to be fast, real time capable and consistently delivering a dense
network of jumps even in very complex environments.

Contents

1 Introduction 1

2 State of the Art 5
2.1 Navigation Mesh . 5
2.2 Manual Annotation . 9
2.3 Movement-Based Expansion Method 10
2.4 Jumps for Quake III Arena Bots 11
2.5 Smooth Movement Across Random Terrain in Brink 13
2.6 Jump Annotations for Killzone 3 15

3 Problem Definition 21
3.1 Automated Jump Link Generation 21
3.2 Jump Links with Variable Jump Trajectories 22
3.3 Integration of the Jump Links into the Navigation Mesh 24

4 Analysis of the Jump Problem Space 27
4.1 Introduction . 27
4.2 Jump Classification . 27
4.3 Definition of the Optimal Jump 30
4.4 Jump Trajectories and their Lookup Table 32
4.5 Study of the Search Space . 36
4.6 Symmetry and Reversibility of Jumps 38
4.7 Smart Jump Data Model . 40

5 Jump into Polygon Test 47
5.1 Introduction . 47
5.2 Determination of the Landing Points 47
5.3 Jump Collision Volume . 51
5.4 Handling Obstructions . 54
5.5 Handling Different Landing Points 60
5.6 Jump Link Generation . 62

5.7 The Upwards Jump Test . 64
5.8 Summary . 66

6 Jump onto Edge 69
6.1 Introduction . 69
6.2 Preprocessing of the Two Edges 69
6.3 Mapping . 75

6.3.1 Mapping of One Edge onto the Other 75
6.3.2 Domain and Codomain for the Mapping 78
6.3.3 Two-Sided Mapping . 81

6.4 Jump Collision Volume Test . 86
6.5 Postprocessing of the Jump Collision Volumes 88

6.5.1 Merging of Jump Collision Volumes 88
6.5.2 Handling Obstructed Slices 91
6.5.3 Handling Significantly Different Jump Trajectories . . 93

6.6 Summary . 94

7 Results 97
7.1 A Robust Solution for an Optimized Search Space 97
7.2 Study of Jump Link Generation Configurations 104
7.3 Quantitative Evaluation . 109
7.4 Time Evaluation and Real Time Capabilities 112

8 Conclusion and Future Work 117

References 121

List of Figures 125

Appendices 131

A Detailed Flow Charts 131

B Test Environment from Counter-Strike: Source 140

C Interview 148

1 Introduction

This thesis will present a solution for enabling virtual artificial intelligence
(AI) agents to perform accurate jumps in complex three-dimensional envi-
ronments. The solution will automatically generate jump links which can
then be used by the AI agents to perform accurate jumps. Using these jump
links in conjunction with a navigation mesh will enable the AI agents to use
jumps in their navigation queries to find shorter paths or to reach locations
that are only accessible by jumping. To put it in a nutshell, we want to enable
an AI agent to jump from one roof to another to prevent him from running
five floors down, across the alley and five floors up again.

Figure 1: Screenshot of two parts of a navigation mesh connected by a jump link.

Figure 1 shows a simple example of a jump link. Visualized in blue are
two separated parts of walkable surface which result from two separate boxes

1

1 Introduction

floating below them. The green curved quadrangle represents a jump link
which connects the two walkable surfaces.

Artificial Intelligence in the field of virtual agents has developed rapidly in
the past years and efficient pathfinding algorithms and data structures have
been extensively studied in the academic world. Navigation meshes are
one of the state-of-the-art data models that are being used for virtual agent
navigation and there is academic literature as well as industry standard
implementations on the topic of automatic generation of navigation meshes
from polygonal worlds. However, these navigation meshes only cover the
walkable surface of an environment. By not only automatically generating
the jump information but also encoding it in a manner that integrates well
into the existing data structure of navigation meshes, this thesis aims at
enhancing the AI’s terrain reasoning capabilities to enable him to move
beyond the walkable surface of his environment.

As an example, figure 2 presents a complex three-dimensional world from
the game Counter-Strike: Source [Val13]. The navigation mesh is colored in
blue and the curved quadrangles in green, orange and yellow are jump links
generated by the solution presented in this thesis. The density of the jump
links makes clear that the number of jump links found by our methods add
quite some navigational information to the knowledge base of a virtual agent.
Placing context information like jump links into the virtual world is called
world annotation.

The jump links can also be utilized for player control support. That is when
a virtual character is controlled by a human, the AI data is used to anticipate
certain complex movements the player intends to initiate, thus enabling the
player to trigger a much wider range of actions with a very limited control
interface [Spl13]. This usage of world annotation to assist the player in the

2

Figure 2: Screenshot of the jump links found by this thesis methods for the test
environment “cs_desperados”.

3

1 Introduction

execution of complex movements in close interaction with the geometry gets
more and more popular in the entertainment industry.

Advanced movement technology is already a major part of the product
value and the unique selling points of some multiple million dollar enter-
tainment titles. An exemplary product is Brink with its “SMART” acrobatic
movement system which is one of the aspects of the game that set it apart.
“SMART is Brink’s most successful innovation.”[Pea11]

The quest to give agents the ability to jump realistically is around for
some time and automating the process of jump link generation [Far06] and
eventually realizing a real-time solution is one of the next vital steps in
extending an agent’s ability to navigate through virtual worlds.

Section 2 will describe the fundamental data structure and existing meth-
ods to create jump links. The details of the jump link generation presented
in this thesis will be defined in section 3. Section 4 will analyze the search
space for jump links and the deduced tests will be described in section 5 and
6. The results of the jump link generation will be evaluated in section 7.

4

2 State of the Art

2.1 Navigation Mesh

In the next sections we will have a look at different approaches to generate
jump annotations, which have mostly been realized for video games. But to
begin with, we will describe the fundamental data structure that this thesis
will build upon: the navigation mesh.

Figure 3: Schematic view of two navigation meshes. From [Toz04] colored afterwards.

Navigation meshes were first described in [Sno00] and are now the fa-
vored search space representation for pathfinding [MS08] and terrain rea-
soning [Toz08]. A navigation mesh is a graph with nodes, that represent
the traversable surfaces of the level geometry, and edges, which describe
the traversability from one traversable surface to another [Sno00; Toz04].
The traversable surfaces are convex polygons, so that in these surfaces there
can be maneuvered without any pathfinding look ups apart from dynamic
objects [Sno00; Toz04].

In figure 3 by Snook, which has been colored afterwards, two different
navigation meshes are visualized. The left navigation mesh, colored in blue,
only consists of triangles, whereas the navigation mesh nodes on the right

5

2 State of the Art

mainly consists of quadrangles. The navigation mesh edges in figure 3 are
presented as small line-segments across shared outlines of the navigation
mesh polygons.

Figure 4: An example of geometry with its navigation mesh. From [Mon12].

The navigation mesh covers the whole walkable surface except for a little
margin to the walls, to obstructions and to the outline of the geometry as
shown in figure 4 and figure 6. The agent obviously has a width and that
width has to be considered in the navigation mesh, preventing the agent
from partially standing inside of an object. Since the agent’s origin is usually
in the middle of his feet and the navigation mesh should be constructed in
such a way that the agent can stand at every point inside of a navigation
mesh polygon, the navigation mesh margin has to measure half the agent’s

6

2.1 Navigation Mesh

width. Figure 5 shows a navigation mesh in blue consisting of two polygons.
The gray circle symbolizes the agent with the cross “×” marking his origin.
The dimensions of the agent extend exactly to the outer edge of the geometry
in figure 5. If the agent was positioned outside of the navigation mesh, his
extends would exceed the geometry or he would partially be included in an
object. Only if the agent, represented by his origin, is positioned at any point
inside of the navigation mesh, it is guaranteed that he does not collide with
anything else than the floor.

agent navigation mesh

world geometry

Figure 5: Sketch of an agent standing inside a navigation mesh.

There are several different methods to create navigation meshes, like
Movement-Based Expansion, voxelization and subdivision routines meth-
ods [Axe08; Toz02]. Even several products exist that automatically gener-
ate navigation meshes for arbitrary world geometry like “Xaitment” [xai]
and “Recast” [Mon12]. The primary use of navigation meshes is of course
pathfinding, which is a well researched subject in the context of artificial
intelligence. Pathfinding algorithms like Dijkstra’s algorithm, A* search al-
gorithm and hierarchical Path-Finding A* algorithm are well-studied. The
resulting paths will usually be post processed by path smoothing algorithms.

7

2 State of the Art

Figure 6: A navigation mesh example. From [xai].

Path smoothing will be relevant in section 4.7 that addresses the integration
and storage of jump links in a navigation mesh. Thus, the principle of path
smoothing will be described here. A path returned by one of the pathfinding
algorithms is usually edged and not straight and smooth. Figure 7(a) shows
an unsmoothed path colored in a dark red from the house at the top with
the blue navigation mesh to the street at the bottom of the figure. Especially
where the path crosses the intersecting road, the angularity of the path is vis-
ible. This angularity results from the structure of the calculated movement
through the polygons of the navigation mesh, which can go through the
middle of a polygon or the middle of a shared edge [Pat12]. Path smoothing
is a post-processing that modifies the path so that it appeals more realistic
and does not always lead through the middle of a polygon or the middle of a
shared edge. This is done by applying smooth straight-line movement, adding
smooth turns and legal turns [Pin01]. For instance figure 7 visualizes the path
smoothing.

8

2.2 Manual Annotation

(a) A path before path smoothing. (b) A path after path smoothing.

Figure 7: An example of path smoothing. From [xai].

2.2 Manual Annotation

Manual annotation in the context of jump capabilities for agents means that
designers place the jump links in locations where they think they are appro-
priate. Basically the start and the landing point are defined by the designer,
normally with some restriction to the placement, depending on the number
of jump trajectory animations and their flexibility. This way of placing jump
links is very time consuming and has to be redone in the event that the
environment around the jump link is changed. It is a robust technique for
a controlled and small environment, but it is not a practical solution in the
sense of a realistic representation of human jump capabilities. Because this
would involve a lot more jump links than manual annotation can deliver in
an acceptable work time. Figure 8 shows an example of how manual jump
links are placed in the CryEngine 3 development kit [Cry].

9

2 State of the Art

Figure 8: Screenshot of a jump object (yellow) in the CryEngine 3 development kit. From
[Cry]

2.3 Movement-Based Expansion Method

The movement-based expansion method works like a recursive flood fill
algorithm, which can be used to generate navigation data as well as jump
links. Beginning with a given point, a movement is simulated and if the
movement is positively executed, the new position is added to the movement
data. Jumps can be simulated the same way and if they are positively
performed, a jump link can be added to the navigation data. [Axe08; Smi02]

This approach is rather theoretical because the size of state-of-the-art
worlds and the amount of different jumps, like a long jump, a jump down
and a jump up, result in an extremely long computation time [Axe08]. Since
jump links are generated for every possible location, a high number of jumps
has to be stored resulting in a high memory requirement or a post processing
to determine useful jumps. Therefore, this method is more theoretical than

10

2.4 Jumps for Quake III Arena Bots

practical while all further introduced approaches have been implemented
and have been used in video game production.

2.4 Jumps for Quake III Arena Bots

Quake III Arena was developed by id Software and first published 1999 [Wik13].
This video game is a multiplayer first person shooter which can be played
with and against other players as well as virtual players, also called bots.
Quake III Arena has implemented an Area Awareness System (AAS) that
includes the search space representation for pathfinding queries. The AAS
consists of areas which describe the walkable surface and the surface where
agents can swim. These areas are connected by reachabilities. Additionally,
the AAS contains information about other entities of the game [Wav01]. This
system contains more information than just the navigation information like
a navigation mesh.

There are different tests for generating reachabilities like jumping onto
a barrier, walking off a ledge and jumping over a gap. Reachabilities are
connecting different areas. So for a jump onto a barrier, two borders of
areas are needed which lie in one perfectly vertical plane and are vertically
overlapping each other. Between such area borders, a jump onto a barrier is
generated if the borders have a certain distance and the jump volume is not
blocked by any obstacle. The tests for walking off a ledge and jumping over
a gap are similar. In order to check two edges of different areas for jump
reachabilities, first, the closest points of these edges are determined. If there
is a line-segment closest to the other edge, the middle of this line-segment is
used as the closest point. A jump between these points is simulated to check
whether the jump is possible and unobstructed. After this has positively
been tested, a jump reachability is generated as shown in figure 9.

11

2 State of the Art

Figure 9: Screenshot of a jump reachability in Quake III Arena. From [Wav01].

In Quake III Arena different areas are connected by jumps with point to
point reachabilities. In general, point to point connections are inflexible in
the post processing of path smoothing because the takeoff and landing points
are fixed and cannot be adjusted to the smoothed path. Applied to figure 9,
an agent who was supposed to move from the left bottom of the red area to
the top right corner of the pink area would use a path up to the takeoff point,
then jump and continue up to the goal instead of using the shortest way to
the goal by jumping diagonally from on area to the other.

The test method used for jump reachabilities does not contain any contin-
gency alternatives for obstructions. This means that in case of an obstruction,
no reachability is generated even if a jump between the non-closest points of
the areas would be possible. Also for jumping onto a barrier and walking off

a ledge, only a perfectly vertical gap can be overcome while even along small
slants no reachabilities are found. Furthermore, jumps down into an area are
not possible because in this situation edges exactly vertical over each other
do not exist. Overall, reachabilities are only generated in defined situations.

12

2.5 Smooth Movement Across Random Terrain in Brink

2.5 Smooth Movement Across Random Terrain in Brink

In 2011 Splash Damage published Brink, a first person shooter with a acro-
batic movement system, which is called Smooth Movement Across Random
Terrain (SMART) [Spl13]. SMART enables the players to perform different
kinds of jumps depending on the geometry in front of them and where the
player wants to go. Therefore, annotations are stored within the virtual
world [Hal12].

Figure 10: Different movement capabilities supported by SMART. From [Bri12].

In figure 10 the different movement possibilities are visualized. The move-
ments on the left path are a wall hop and a vault while the path in the middle

13

2 State of the Art

comprises a pullup, a slide and another pullup. The other path in the mid-
dle consists of the actions wall hop and pullup and on the rightmost path a
simple pullup is performed.

Figure 11: Screenshot with pullup reachabilities of Brink. From [Hal12].

These movements can only be performed where the corresponding reach-
abilities are set in the virtual world. These point to point connecting annota-
tions are shown in figure 11. As described earlier for the jump reachabilities
of Quake III Arena, point to point annotations are inflexible for path smooth-
ing. For all reachabilities other than slides will be searched where edges of
the walkable surface overlap vertically [Hal12]. This means that no reach-
abilities will be found if the edges do not overlap perfectly in the vertical
dimension.

14

2.6 Jump Annotations for Killzone 3

2.6 Jump Annotations for Killzone 3

Killzone 3 is a first person shooter developed by Guerrilla Games and published
in February 2011 [Son10], which uses automatically generated annotations.
Among others, leap, jump down and vault annotations have been created as
visualized in figure 12. In further considerations we will focus on leap and
jump down annotations because vaulting actions depend on finding some
cover over which a vault is possible and this thesis does not regard cover
detection.

(a) leap over a gap (b) jump down a ledge (c) vault over cover

Figure 12: Different jump capabilities of Killzone 3. From [Mon11b].

The implementation consists of two tests, one for leaping and one for
jumping down. Each outline in a navigation mesh is tested for possible
jumps down while for leap annotations every outline pair is tested if a jump
is possible. The collision test is based on a voxel representation of the world
geometry. Figure 13 shows a jump volume which is tested for obstructions.
If there is no obstruction, the outlines are connected by a jump link, also
called off-mesh connection.

15

2 State of the Art

Figure 13: Schematic of a jump collision volume. From [Mon11b]

Figure 14: Issues with leap annotations caused by only using a single trajectory (top view).

16

2.6 Jump Annotations for Killzone 3

The test to find leap annotations places one fixed trajectory in the middle
between the two outline edges which we test. The trajectory can be stretched
and compressed a bit to adjust it to the actual situation of the navigation
mesh outlines, but only a small adjustment is possible. Therefore, if the gap
between the navigation mesh outlines is much smaller than the width of the
fixed trajectory, the takeoff points and the landing points are shifted away
from the gap and are lying somewhere in the two areas. However, if the
gap between these outlines is small and also the areas are small, no off-mesh
connection will be found because the jump with the fixed trajectory is wider
than the whole areas with the gap. In figure 14 this issue is visualized,
showing five situations with two walkable areas in blue and the jump links
between them in green. In the first situation from the left, the gap between the
walkable surfaces is too large for a jump link to be generated. In situations
two to four, the generated jump links do not adapt to the shrinking gap,
instead their starting points and ending points move towards the outer edge
of the walkable areas. In the last situation on the right, the gap is even
smaller, resulting in the tested jump trajectory to start and finish outside the
blue navigation mesh polygon so that no jump is found.

The off-mesh connections for jumps down are also tested with a fixed
trajectory, meaning that the jumps down must have a certain height and
neither higher nor lower jump annotations can be generated. In figure 15
this aspect is visualized. On the left of the figure no jump is possible because
it is higher than the maximum falling depth. In the middle, jump annotations
are found, but on the right of the figure, where the platforms are nearest, no
off-mesh connections are produced. This comes for example into play when
a jump down is tested along a ramp as shown in figure 16. Only a slim jump
on the higher part is found, and along the rest of the ramp the smaller jumps
are not found.

17

2 State of the Art

(a) perspective view (b) front view

Figure 15: Issues with jump down links caused by using only a single trajectory and a
small landing height tolerance.

Figure 16: Restrictive jump down test at the example of a ramp.

18

2.6 Jump Annotations for Killzone 3

This restriction to two tests through a fixed trajectory results from practical
issues in the game development pipeline. For each performable jump an
animation is needed and the animation and jump action have to be integrated
into the product. This involves several different professions and a lot of
work, which limits the amount of complexity that is profitable for a single
product [Mon13]. The Killzone 3 implementation automatically generates
jump annotations with a reasonably reduced search space. The generated
jump links are no point to point connections, so that jumps can be flexibly
modified during the path smoothing process. The off-mesh connections are
constructed between areas on nearly the same height and between areas
below each other; in all other cases no jump annotations will be found.
Moreover, if there are any obstacles obstructing the jump volume, no other
jump trajectories are tested. For example, if a higher jump would jump over
the obstacle, this would not be found.

Figure 17 shows an environment including off-mesh connections which
have been generated with the technology implemented in Killzone 3. The
next section will outline the differences to the above introduced methods for
jump link generation and define the details of automatic jump link generation
which this thesis studies.

19

2 State of the Art

Figure 17: Off-mesh connections found with the technology of Killzone 3. From [Mon11a].

20

3 Problem Definition

3.1 Automated Jump Link Generation

This thesis will present a solution for automatic jump link generation, em-
powering the agent with new movement capabilities. There are several kind
of movements that can be categorized as jumps. In this thesis though, we
will focus on jumps that are performed in a usual jump stance, which means
that during a jump from a takeoff point to a landing point nothing is touched
in contrast to vaulting over something and somersaulting.

There exists an enormous number of jumps that could be generated, but
we are only interested in jumps which enable the agent to move along new
paths. Of course we want to find jumps that allow the agent to access areas,
which are unreachable without jumps, such as two unconnected islands as
visualized in figure 18(a). Figure 18(b) shows a passage from one platform to
another one, but there is no direct contact between these platforms. A jump
link between these platforms is intended to provide a shortcut between them,
but there also exist unwanted jumps, like jumps that start and land in the
same free square. In these cases a straight walkable way from the takeoff

point to the landing point exists, making those jumps unnecessary. Also
redundant jump links, like several jump links between one pair of takeoff

and landing point, are undesirable. These jumps are not wanted because they
do not enable the agent with new and advantageous movement capabilities.
However, we also want to find jumps that provide an alternative path like
the jump alongside a bridge shown in figure 18(c). Obviously the jump
alongside the bridge would take longer than walking over the bridge, but
in case the narrow bridge is occupied by another agent, an alternative path
like a jump alongside the bridge would be of advantage. Alternative paths

21

3 Problem Definition

thereby allow the agent to react properly to dynamic obstacles like other
agents in the world geometry. In a nutshell, the solution presented by this
thesis is supposed to find useful jumps that provide the agent with new and
alternative movement capabilities.

The solution should be completely automated, so that it can be easily inte-
grated in the process of the navigation mesh generation. Since the navigation
mesh generation is often used in an iterative process by designers, we want a
consistent jump link generation, so that local changes in the world geometry
and in the navigation mesh lead to other jump links adapted to the new local
environment. The solution will use tunable variables, which can be defined
individually for each application, ensuring that the user will get optimal
results for his scenario. Apart from defining these tunable variables, there
are no inputs required by the user, because the generation of the jump links
will be completely automated.

We want a solution with a reasonable computation time to make even real
time application possible. However, the presented solution will be designed
to find almost every possible useful jump. The number of found jumps will
be examined in this thesis. Basically, we want a method that tests for specific
jumps between points and does not simply apply a brute force search for
every possible jump. This will clearly help to differ between useful jumps
and jump links we do not want to find. Thereby, we will get a reasonable
generation time for the jump links.

3.2 Jump Links with Variable Jump Trajectories

This thesis deals with the generation of jump links, which are a data structure
storing jump information. However, we do not want to generate jump links

22

3.2 Jump Links with Variable Jump Trajectories

(a) unconnected islands

(b) shortcut

(c) alternative paths

Figure 18: Different scenarios of wanted jump connections. Only the jumps that are
exemplary for the shown scenario are rendered for clarity. The methods presented in this

thesis actually find several more jumps.

23

3 Problem Definition

that connect only two points, resulting in a jump link that represents exactly
one jump, like the annotation generation presented in section 2 for Quake III
Arena and Brink. Instead, we want a jump link to connect two line-segments,
so that between these edges both straight and diagonal jumps are possible.
This means that a jump link is not directly associated to one specific jump
but rather represents a set of jumps.

The generation of jump links should not require that the world geometry
fits a specific pattern to find a jump. On the contrary, jump links should be
found easily and without any restrictions to the world geometry. Therefore,
the solution needs to support a lot of different jump trajectories with different
jump heights and jump distances. That way, a suitable jump trajectory can
be chosen, depending on the world geometry. Moreover, we can test several
trajectories between a pair of takeoff and landing points, thereby avoiding
obstructions by the means of alternative jump trajectories. To make this
possible, the solution has to support a lot of variable trajectories, which is
one main difference to the jump link generation processes of Quake III Arena,
Brink and Killzone 3 presented in section 2, which are based on one or a very
small number of jump trajectories.

Because we do not have a fixed number of trajectories, our solution does
not simply have to test whether a jump is possible, but it has to be checked
which of the many jumps between a certain takeoff point and a chosen
landing point is possible. This means that the solution does not test blindly,
but has a specific test that checks for jumps between takeoff line-segments
and landing line-segments.

3.3 Integration of the Jump Links into the Navigation Mesh

There are two majorly different approaches to enable an agent to jump pre-
cisely. One is testing the jump possibilities in real time during the pathfinding

24

3.3 Integration of the Jump Links into the Navigation Mesh

of the agent. The developers of Brink stated that these tests were not real time
capable for 16 players [Hal12]. Considering that players do not have a path
planning phase and only need the test for control support when they initiate
a jump, the real time jump tests are definitely not possible for AI agents. The
other approach is to preprocess the jump possibilities in the environment
prior to the individual path finding queries of the AI agents. Important to
note is that the jump link preprocessing itself can be real time capable but
not if all jump links are calculated for every pathfinding query. Instead, the
environment is reexamined in real time when it changes, so the jump link
data is already processed when the pathfinding starts and can be used in
multiple queries.

One criterion for a jump link should clearly be that the agent can stand
at the takeoff point and the landing point of a jump. Consequently, all
takeoff and landing points have to be inside a navigation mesh of the world
geometry. Therefore, the solution uses a navigation mesh as well as the world
geometry as data input. Many navigation mesh generations are designed to
work for arbitrary worlds. For a simple integration of the automated jump
link generation we do not want to constrain these arbitrary worlds, for which
navigation meshes are generated. Basically, we want a robust solution that
can handle arbitrary worlds.

The tool “Recast”[Mon12] is a robust solution for the generation of three-
dimensional navigation meshes. It is based on voxelization and will be used
to create the navigation mesh for the presented solution. Furthermore, voxel
data, created for the navigation mesh generation, will be used for the col-
lision tests within the jump link generation. More precisely, the jump link
generation will use a Boolean collision test which tests for obstruction in a cer-
tain distance over a two-dimensional curve placed in the three-dimensional
world.

25

3 Problem Definition

For the jump link data to be easily accessible by pathfinding algorithms,
we store the jump links in conjunction with the navigation mesh. Thus,
the output of the solution is a navigation mesh which has been extended
by the information of the jump links. Different kinds of movement like
walking, crawling and crouching are often encoded in the navigation mesh
[BSL04; Fun09], which means doing the same with jump data follows a
proven concept. The storage of the jump links will be discussed in more
detail in section 4.7. In the next section though, we will first examine the
navigation mesh and where the wanted jumps’ takeoff and landing points
are located.

26

4 Analysis of the Jump Problem Space

4.1 Introduction

In the previous section we have already discussed that we want to find jumps
representing connections among separate navigation mesh parts, shortcuts
between logical points and alternative paths. This section will analyse the
space where jumps could be performed.

First, we will classify jumps according to their takeoff and landing positions
and thereafter we will discuss the wanted jump trajectory. Combining these
information, we will deduce where the solution has to search for the jumps
we want to find.

4.2 Jump Classification

As described in section 3.3, we use a navigation mesh as the fundamental
data structure for the walkable areas of the world geometry. Obviously
jumps should take off and land somewhere the agent is able to walk, not to
mention stand. Therefore, takeoff and landing positions have to lie inside of
the navigation mesh.

A navigation mesh is a graph with polygons as nodes and shared polygon
edges as graph edges. Points in a navigation mesh can lie either inside of a
polygon or on the outline of the polygon. In the latter case, the point has to
lie on one edge of the polygon. The positions of the takeoff point and the
landing point of a jump define to which of the following classes the jump
belongs, namely to

27

4 Analysis of the Jump Problem Space

• Jump from Edge onto Edge,

• Jump from Edge into Polygon,

• Jump from Polygon onto Edge and

• Jump from Polygon into Polygon.

These classes will now be described in more detail and with examples.

Jump from Edge onto Edge
The class jump from edge onto edge contains jumps whose takeoff and landing
points are lying on edges of the navigation mesh polygons. Figure 19 shows
a schematic example of a jump from an edge of one navigation mesh polygon
onto an edge of another polygon.

(a) top view

(b) side view

Figure 19: Schematics of a jump from edge onto edge.

An example of a jump from one edge to another edge is the far jump from

28

4.2 Jump Classification

a roof ledge to the roof ledge on the other side of the street or a jump from
one wooden post to another.

Jump from Edge into Polygon
Jumps of this class start from an edge like in the class jump from edge onto edge,
but they end inside of a navigation mesh polygon as visualized in figure 20.

Figure 20: Schematic of a jump from edge into polygon.

For instance, a hop from a windowsill onto a jumping blanket or from the
vaulting horse onto a mat are jumps of this class. Other examples are jumps
from tree branches or bridges onto the ground beneath them.

Jump from Polygon onto Edge
This class contains the reverse jumps of the class jump from edge into polygon.
These jumps take off inside of a polygon and end on an edge of another
navigation mesh polygon.

Figure 21 schematically shows such a jump. Examples could be a jump
from a balcony onto a windowsill or from the ground onto the edge of a box.

29

4 Analysis of the Jump Problem Space

Figure 21: Schematic of a jump from polygon onto edge.

Jump from Polygon into Polygon

Figure 22: Schematic of a jump from polygon into polygon.

Jumps of this category take off and land inside of a navigation mesh poly-
gon. Such a jump is visualized in figure 22. Examples include jumps from a
trampoline onto a mat or a hop in the children’s game hopscotch from one
square to another.

4.3 Definition of the Optimal Jump

In this section we will take a closer look at what kind of jumps we want to
find and how these jumps look like. In section 3 we described three kinds of
jumps we want to find, one of which was the shortcut between two platforms.

30

4.3 Definition of the Optimal Jump

Between these platforms, there are a lot of different jumps possible, which
is shown in figure 23. The jump possibilities vary in their height as well as
their length. This means that between these two platforms there are jumps
that differ both in takeoff and landing point (green and blue), jumps that
differ either in their takeoff point (green and yellow) or in their landing point
(yellow and blue) as well as jumps with the same takeoff and landing points
but a different height (green and purple).

Figure 23: Schematic of the two platforms and several totally different jumps between them.

If these platforms were far away from each other there would obviously
just be the flat jump from the ledge of one platform to the border of the other
platform (green) possible. In the case that the takeoff point and the landing
point are wooden posts, we do not wish an unnecessarily high jump between
these positions, and a jump down out of a window to get back into the house
should clearly be as short as possible. In these examples we can see that the
wanted and most natural jump is always as short as possible and as flat as
possible. The desired jump connects the closest points of two positions with
the shortest jump trajectory that connects these points. We call this preferred
jump the optimal jump.

There do exist situations though, in which the optimal jump is not the best
jump. For example if an agent jumps from one roof to another roof which is

31

4 Analysis of the Jump Problem Space

significantly lower and close in order to climb down a ladder at the far end
of this second roof, we would expect the agent to jump, roll and run further
towards the ladder. In these cases, when the further path of the agent has
the same direction as the jump, a far jump could be more believable than
the short optimal jump. Nevertheless, the optimal jump is not unbelievable
because after the jump, the agent simply has to walk across the rest of the
roof. On the other hand, in all situations where the jump direction does
not match with the further path of the agent, jumps that are further than
the optimal jump would be very unbelievable, because the whole distance
covered by the jump has to be walked back. Therefore, the optimal jump is
not always the most believable, but never an unbelievable jump.

4.4 Jump Trajectories and their Lookup Table

Up to now we have only specified that the jump trajectory connecting two
positions should be short and flat. In this section the trajectory will be
described more formally. An agent who performs a jump uses his takeoff

velocity and angle to land at his desired location. During the flight of a jump,
the trajectory is influenced by the gravitational acceleration g and the air drag.
A long jump can be represented by two different parabolas, which are merged
at their maximum [Mül04]. We ignore the air drag, because its impact heavily
depends on the posture of the agent which we do not want to constraint.
Furthermore we want our data model to support bidirectional jumps in a
certain tolerance to reduce unnecessary data complexity. Therefore, we use
the trajectory of a projectile, which is defined by

trajectoryv0,θ (x) =
−g

2 · (v0)2
· cos2 (θ)

· x2 + tan (θ) · x + y0 ,

where v0 is the launch velocity or in our case the takeoff velocity, θ is the
launch angle and y0 corresponds to the height difference between takeoff and

32

4.4 Jump Trajectories and their Lookup Table

landing location [Fen03].

In section 3.2 we stated that we want to have a specific test. This means that
the test will check if a jump is possible between two points. In conclusion,
the potential takeoff and landing points are provided to be tested. Therefore,
all trajectories Trajectories(x′,y′), which connect the takeoff point (0, 0) and the
landing point (x′, y′) are given by

Trajectories(x′,y′) =

(v0, θ)

∣∣∣∣∣∣∣∣∣θ = arctan


v2

0 ±

√
v4

0 − g
(
g (x′)2 + 2y′v2

0

)
gx′


 .

The previous equation of the set definition only has a solution if the root

term
√

v4
0 − g

(
g (x′)2 + 2y′v2

0

)
is a real number. This means that the launch

velocity v0 has to be great enough to reach the landing point. For each
launch velocity v0 that is great enough, there exist two launch angles θ. The
main difference between these two jump trajectories is the maximum jump
height. So if the flatter jump trajectory is blocked by an obstruction, we can
still find a valid jump based on the other jump trajectory. For Instance in
figure 24 the flatter trajectory (red) is obstructed by some kind of railing,
but the higher jump trajectory (green) can overcome this obstruction and
represents an alternative jump trajectory to the flatter jump trajectory. This is
the reason why we want alternative trajectories to be tested in our solution,
which is done with the jump trajectory lookup table. The lookup table stores
all sets of trajectories that connect one specific takeoff point with one specific
landing point in a list and is organized in a way that allows access to a certain
set of alternative trajectories in constant time.

Considering jump trajectories as two-dimensional curves, the horizontal
axis corresponds to the jump width while the jump height is assigned to the

33

4 Analysis of the Jump Problem Space

Figure 24: The minimal jump is obstructed (red), but an alternative jump trajectories
(green) can still provide a valid jump.

vertical axis. We assume that the continuous space is discretised along both
axes by user specified step sizes. Therefore, every cell of the jump trajectory
lookup table represents a jump width- and a jump height interval. Each of
the table’s cells is filled with all jump trajectories that pass through the cell
JTLT(x′,y′), which is given by

JTLT(x′,y′) =
⋃

x′≤x<x′+∆x
y′≤y<y′+∆y

Trajectories(x,y) .

Figure 25 shows the jump trajectory lookup table with all its cells. Only 1.3%
of the jump trajectories that are stored in the table with the later described
default settings are visualized as curves over the cells represented by the grid
intervals.

For a given takeoff point and a given landing point we can calculate the
jump width and jump height. Based on this calculated jump width and -
height, we can get the correlating lookup table cell which gives us the set of

34

4.4 Jump Trajectories and their Lookup Table

Figure 25: Jump trajectories drawn over a grid as visualization of the lookup table.

jump trajectories, which connect the takeoff point and the landing point. If
the collision test fails for one jump trajectory of this set, we can test another
one of the same set. The jump trajectories, which are stored in one cell of the
lookup table, are ordered according to their arc length, which enables us to
first test flatter jumps that have a shorter arc length. The arc length of the
trajectory trajectoryv0,θ is described by∫ x0

0

√
1 +

(
trajectory′v0,θ

(x)
)2

dx ,

with the trajectory’s trajectoryv0,θ takeoff point is
(
0, y0

)
and the landing point

is (x0, 0).

35

4 Analysis of the Jump Problem Space

The jump trajectory look up table by itself is not just defined by discretisa-
tion of the jump width and jump height, but also by the trajectories that are
stored in the lookup table. The trajectory’s defining variables are the takeoff

velocity and the takeoff angle. For our implementation we choose to store all
trajectories between a minimal and a maximal velocity and a minimal and a
maximal angle in the jump trajectory lookup table. With our default values
of the tunable variables we nearly store 600 000 different trajectories in the
jump trajectory lookup table. Still, the lookup table gives us fast lookups of
desired trajectories for the cost of a rather small memory consumption. In a
worst case we have to check all trajectories stored in one cell, which means a
linear run time depending on the number of trajectories per cell.

4.5 Study of the Search Space

In section 4.2 we classified jumps based on the position of their takeoff and
landing points and in the previous sections we concluded that we want to
find optimal jumps. This section will combine this information to reduce the
search space of our solution.

Depending on the position of the two polygons to each other, the optimal
jump’s takeoff point and landing point either lie on the edge of a polygon or
inside of the polygon. But as we can see in the example in figure 26, none
of the shown optimal jumps has both its takeoff and landing point inside of
a polygon. For a jump down the shortest jump always has a takeoff point
on the edge of a surface. The same applies to long jumps, but while their
shortest jump also has its landing point on the edge of a surface, the jump
down ends inside of a polygon if the lower surface extends under the takeoff

surface. For a jump up the shortest jump always ends on the edge of a
surface. If the takeoff point lies inside a polygon or on the edge it depends
on if the landing polygon lies above and overlaps with the takeoff polygon

36

4.5 Study of the Search Space

Figure 26: Sketch of pairs of polygons and the optimal jumps from the start polygon on the
left towards the other polygons on the right.

or if it does not overlap.

To summarize, all jumps we are looking for have a takeoff point or a
landing point on an edge. Figure 27 shows that there are two kinds of
navigation mesh polygon edges namely those edges that are connecting
two polygons and edges which only belong to one polygon. We call them
inner and outer edges, with outer edges being the ones that do not connect
polygons. A jump should connect positions of different height or positions
on unconnected polygons and not two positions between which a straight
ground connection already exists. Therefore, the edges that are relevant for
the jump test are the outer edges.

In this section we reduced the search space by excluding jumps from
polygon into polygon and through the constraint that jumps do not start or
land in connection with the inner edges. Outer edges of the navigation mesh

37

4 Analysis of the Jump Problem Space

Figure 27: Screenshot of a navigation mesh to illustrate the difference between shared edges
(thin blue line) and outer edges (thick blue lines).

will simply be referred to as edges in the following. In the next section we
will take a closer look at the remaining three classes of jumps and if we can
reduce the search space even more.

4.6 Symmetry and Reversibility of Jumps

In the previous section we have seen that wanted jumps belong to one of the
three classes jump from edge onto edge, jump from edge into polygon and jump
from polygon onto edge. In this section we will discuss the symmetry of jumps
and the reversibility of jumps.

In reality a jump trajectory is never symmetrical, owing to the air drag
[Mül04]. In our solution though, we ignore the air drag and use trajectories
of a projectile as jump trajectories [Fen03]. These trajectories are parabolas,
which means that their curve is symmetrical. Furthermore, in reality most

38

4.6 Symmetry and Reversibility of Jumps

jumps are also doable the other way around, which is visualized in figure 28.
Long jumps can mostly be reversed and if a jump up is possible the jump
down definitely can be done. However, if we assume that the agent can
jump or fall deeper than he can jump up, a possible jump down does not
necessarily mean that the jump up is possible as well.

(a) downwards jump (b) upwards jump

Figure 28: Reversibility of jumps.

As we have seen in figure 26, jumps from a polygon onto the edge of
another polygon are always jumps up. Those jumps up whose landing
polygon does not lie above the takeoff polygon, as well as jumps down and
far jumps all start from the edge of a polygon. We also know that jumps from
edge into polygon are always the shortest jumps down. In reality we would
not always jump down from a point that is 30cm (half the agent’s width) away
from the edge we want jump down. Instead we would walk off the ledge and
make a controlled fall. This is a specialized move that does not allow to jump
over obstacles, to vault over obstacles would require another specialized test
for close interaction with the obstructing geometry. By jumping from the
edges of the navigation mesh, we keep the obstacle avoidance for the takeoff

and the complete flight trajectory in one algorithm. This means that the class
jump from edge into polygon cannot be reduced without loosing wanted jumps.
However, we know that a jump up is only possible where a jump down is
possible, too. Consequently, we can reduce the search space for the class

39

4 Analysis of the Jump Problem Space

jump from polygon onto edge to all those positions where a jump of the class
jump from edge into polygon has been found.

As a result we fuse the test for the class jump from edge into polygon and
jump from polygon onto edge and call it the Jump into Polygon Test, while the
test for jumps of the class jump from edge onto edge is called Jump onto Edge
Test. These tests are implemented for jump links and in the next section we
will discuss the difference between a jump and a jump link.

4.7 Smart Jump Data Model

In the previous sections we talked about what kind of jumps we want to
find and where believable jumps are positioned on a navigation mesh. We
assumed that a jump has one takeoff point connected by one specific trajec-
tory. Such a jump has no variability but is exactly one jump, meaning that
there is only one way to execute it. Such a model with one takeoff point, one
landing point and one trajectory is inflexible in the application, but a way
to circumvent this inflexibility is to store many of these jumps. Thereby, we
would get a lot of parallel jumps as well as many diagonal jumps across these
parallel jumps in one region. This would result in the desired level of detail,
but it would also require a lot of memory. This section will demonstrate the
advantages of jump links as a smarter way of storing the desired detail level
of jumps.

To begin with, we will look at jump links which contain jumps from one
edge of the navigation mesh to another. The basic idea is that a jump link
represents the set of all possible jumps between two edges. Because there is
an endless number of possible takeoff and landing points on a pair of edges

40

4.7 Smart Jump Data Model

Figure 29: Schematic of a jump link connecting two edges of different
navigation mesh polygons.

with an endless number of potential jumps in-between them, each having
its own trajectory, a jump link does not contain any trajectories. Instead, a
jump link connects two edges of a navigation mesh, which means that there
are jumps possible between these edges. Figure 29 shows a jump link that
connects the navigation mesh polygon on the left side of the figure with the
one on the right side.

The jump link can be stored like a shared edge connecting the two naviga-
tion mesh polygons, meaning that the jump link is an edge in the navigation
graph used for pathfinding. Such jump links can be used by any high level
pathfinding algorithm and they allow path smoothing algorithms to deter-
mine the actual jump an agent performs along its path. Figure 30 shows an
unsmoothed path (purple) as determined by the basic pathfinding, while in
figure 30, one can see the same pathfinding query after the path has been
smoothed (pink), resulting in the jump being adjusted to the actual path the
agent will take.

The adjustment of the trajectory requires the trajectory along which the

41

4 Analysis of the Jump Problem Space

Figure 30: An unsmoothed path (purple) and a smoothed path (pink), both traveling
through a jump link (green area).

agent actually jumps to be determined during the path smoothing process.
That is because the takeoff point on the takeoff edge and the landing point
on the landing edge depend on the current pathfinding query. As long as
the takeoff point and the landing point are not fixed, the trajectory cannot
be determined. Consequently, the trajectory has to be computed during the
path smoothing and cannot be preprocessed. The trajectory along which
the agent will jump can be determined with the jump trajectory lookup
table. Therefore, the lookup table is not only put in action in the jump link
generation process, but also during run time to get the actually performed
jump trajectory for a pathfinding query. This is possible because the jump
trajectory lookup table grants us access to the desired jump trajectory in
linear time depending on the number of trajectories connecting the takeoff

point with the landing point.

Therefore, the jump link is a data model which by definition has the desired
flexibility in jumps. In comparison to storing single jumps in a desired level

42

4.7 Smart Jump Data Model

of detail, jump links require much less memory. A jump link in conjunction
with the jump trajectory lookup table represents a huge set of jumps. This set
count of jumps is restricted by the sampling density of the jump trajectory
lookup table and the precision of the determination of the takeoff and landing
points in the path smoothing process. Since no trajectories are stored, we
only have to store the two edges which are connected by the jump link. As
will be explained in detail later, a jump link needs to be able to only apply
to a part of an edge. Thus both edges will be stored together with two
variables between zero and one denoting where on the edge the link begins
and ends. A screenshot of such a partial jump link can be seen in figure 31.
To summarize, a jump edge is stored in the navigation graph connecting two
nodes. This jump edge also includes a pointer to a jump link, which holds
the information about which two outline edges of the two connected nodes
(navigation mesh polygons) are actually linked and which part of them.

Figure 31: Obstructions on the left and right side leading to a partial jump link. (Only the
discussed jump link is visualized.)

43

4 Analysis of the Jump Problem Space

We defined jump links to connect two edges of the navigation mesh. This
works fine for jumps of the class jump from edge onto edge, but jumps of the
class jump from edge into polygon do not land on an edge of the navigation
mesh. For jumps of this class a virtual edge is created along the landing
points of the downward jump. This virtual edge then serves as a landing
edge. An example of a virtual edge is visualized in figure 32. In the situation
that a jump down lands in several navigation mesh polygons, there will
be several jump link edges created in the navigation graph to account for
the different connections to the multiple navigation mesh polygons that the
jump down lands in. Still, there is only one jump link with one virtual edge
stored, because how the agent jumps through this jump link is up to the path
smoothing and does not interfere with high level pathfinding. Apart from
the virtual edges there is no difference between the jump links for jumps of
the class jump from edge into polygon and the jump links for jumps of the class
jump from edge onto edge.

With this concept of virtual edges we are able to store jump links for jumps
of all three different classes. As we have seen in section 4.6, jumps of the class
jump from polygon onto edge (upward jumps) are only possible where jumps of
the class jump from edge into polygon (downward jumps) have been found. In
case that the complete jump down link can also be jumped up, the link will be
stored as a bidirectional jump link instead of two separate directional ones.
The Jump into Polygon Test, which checks for such downward and upward
jumps, will be described elaborately in the next section.

44

4.7 Smart Jump Data Model

Figure 32: Screenshot of a virtual edge (blue line at the lower end of the jump link) for a
jump from an edge into polygons.

45

46

5 Jump into Polygon Test

5.1 Introduction

The Jump into Polygon Test is one of the two jump tests mentioned in the
section 4.6. There we have discussed that jump ups are only possible at
locations where a jump down is possible. Therefore, the Jump into Polygon
Test first checks if a jump down from a navigation mesh edge is possible, and
only if a jump down has been found, a test for the jump up is done. The
jumps found by the Jump into Polygon Test are of the class jump from edge into
polygon and of the class jump from polygon onto edge. Intuitively this test finds
jumps from a balcony onto the ground, from a fire escape down into the alley
and from the balcony onto a windowsill.

The Jump into Polygon Test consists mainly of the determination of the
landing points and afterwards a collision test of the jump space after which
the jump links are created. All these steps will be described in more detail
in this section. But first we will take a closer look why the Jump into Polygon
Test is really necessary.

5.2 Determination of the Landing Points

The Jump into Polygon Test has a given takeoff edge, but it has no fixed
landing points. As mentioned earlier in section 4.3 the wanted jump down
trajectory is the one which represents a minimal jump. With this trajectory
the landing points will be determined. The minimal trajectory will be placed
at the takeoff edge and where this minimal jump down trajectory collides
with the navigation mesh is where the landing point will be.

47

5 Jump into Polygon Test

Figure 33: Side view of a jump down (orange) with geometry (hatched)
and navigation mesh (blue).

The navigation mesh is constructed so that the agent can stand at every
point inside of that mesh. This means that the navigation mesh never touches
an obstruction. To ensure this, there is a gap between the navigation mesh
and any obstruction with the extent of half the agent’s width.

As described in section 4.6 we want a jump that takes off at the edge of
a navigation mesh and not the ledge of the geometry underneath. For our
minimal jump we make use of that gap between the navigation mesh and
the ledge of the obstruction and deduce that the minimal jump’s width at
the height of the takeoff has to measure at least an agent’s width so that
the jumping agent does not collide with whatever he was standing on. If
we consider the jump trajectory as a two-dimensional curve, we let the
coordinate origin be the takeoff point. This means that the minimal jump
does not drop under a positive jump height before the jump width is at
least the agent’s width. This condition has to be met so the agent gets over
the obstruction edge, which is illustrated in figure 33. The jump that has
the shortest trajectory to the floor is the fastest jump down and defines the
minimal jump that we are looking for. We measure which trajectory is the

48

5.2 Determination of the Landing Points

shortest when hitting the maximum falling depth and this trajectory is our
minimal jump trajectory. Combining this with the definition of the jump
trajectory from section 4.4, the resulting minimal trajectory for our default
settings is trajectory2.7 m

s ,61.6◦ . This minimal jump trajectory is visualized in
figure 34.

1 2

−3

−2

−1

0

Figure 34: The minimal jump trajectory with a velocity of 2.7 m
s and an angle of 61.6◦

−g

2·(2.7 m
s)2
·cos2(61.6◦)

· x2 + tan (61.6◦) · x

Similar to a navigation mesh where a polygon represents an area in which
the agent can move freely, the wanted jump links should be represented by
a curved area over which the agent is able to jump. This especially means
that it is possible for the agent to jump along the outer border of a jump link,

49

5 Jump into Polygon Test

Figure 35: Schematic front view of the extended sampling at the right and left end of the
takeoff edge. The takeoff sample points are the pink circles.

which implies that space to the left and the right of the jump links also has to
be tested for collisions. For this purpose we extend the takeoff line segment
at both ending points by half of an agent’s width, as visualized in figure 35.

Figure 36: Perspective view of a jump down sample point distribution (pink circles) for the
takeoff edge.

To determine the landing points a tunable number of sample points will
be equally distributed along the extended takeoff line segment. For each

50

5.3 Jump Collision Volume

takeoff sample point a landing point will be placed where the minimal jump
trajectory first collides with the navigation mesh or the world geometry. If
there is no collision, this landing sample point is marked with “No Collision”,
meaning that it is an invalid landing point. Otherwise the landing point is
marked with “Navigation Mesh” or “World Geometry” according to the type
of the first collision. In this way it is ensured that each takeoff point with a
valid landing point is connected by the minimal jump trajectory, provided
that there is no obstruction (see figure 36). The markings and their relevance
will be explained later in section 5.4.

5.3 Jump Collision Volume

The jump collision volume is a volume in which all jumps along an edge
are performed. Therefore, this volume has to be tested for collisions to find
out where jumps are possible and where not. Before we turn to the whole
jump collision volume, we will have a look at the volume of one single jump.
Every jump is defined by a jump trajectory, so it is obvious that the single
jump collision volume is also defined by that same trajectory. As a result, the
volume of a single jump looks like a tube, which is illustrated in figure 37.

The jump collision volume along an edge e is given by

jump collision volume(e) =
⋃

all jumps j along this edge e

single jump collision volume
(
j
)
,

where j is one jump from the takeoff edge e. Because we do not only want
to have a specific number of jumps per edge but rather want to be able to
jump from every point of the edge, we test the jump collision volume for
obstruction and not the single jump collision volume.

We represent the volume by a set of jump collision volume slices. Figure 38
shows how these slices are distributed between the takeoff edge and their

51

5 Jump into Polygon Test

Figure 37: Profile of a single jump collision volume.

jump down landing points. Each slice will be individually tested for colli-
sions and have its own collision value. This collision value of one slice can
either be free or obstructed. A slice is defined by a takeoff point, a landing
point and the set of jump trajectories connecting these two points. The set
of jump trajectories is provided by the corresponding cell in the jump trajec-
tory lookup table. Obviously this cell contains the minimal jump trajectory,
because the landing points were constructed by this trajectory. The jump
trajectory lookup table also provides alternative jump trajectories, which
connect the takeoff point with the landing point. The Jump into Polygon Test
uses only those cells of the lookup table, which include the minimal jump
trajectory. The set of trajectories returned by the jump trajectory lookup table
is used to construct a slice. A slice is obstructed if all collision tests for all
trajectories detect an obstruction, which means there is no possible jump.
As stated in section 5.2, the number of takeoff and landing sample points

52

5.3 Jump Collision Volume

is tunable, and this directly relates to the density of the slices and thus the
precision of the collision test. Meaning if the density of the slices is too low,
it is possible that a very small obstruction exists between slices which would
then be falsely tested as unobstructed. Therefore, it is important to have a
sufficient sampling density. In figure 38, collision free slices are visualized in
green.

Figure 38: Perspective view of a jump down with all its slices.

One collision test is performed with one trajectory collision area. This
area is located between one takeoff point and one landing point and defined
by a jump trajectory that connects these points. More precisely a trajectory
collision area is the two-dimensional area between the jump trajectory and a

53

5 Jump into Polygon Test

vertically shifted version of that. The lower jump trajectory starts where the
feet of agent would be when initiating the takeoff. The top jump trajectory
starts at the height of the top of the agent’s head, which means it is vertically
shifted by the agent’s height. A trajectory collision area is illustrated in fig-
ure 39. To test these jump collision areas of one slice the implementation uses
a collision test from [Mon11a]. A practical method to accelerate a collision
test is first to check if a bounding box is free of collisions and only test the
detail geometry for collisions if the bounding box is obstructed. This concept
is also valid for our implementation, which means that the slices only have
to be tested if a bounding box of the jump collision volume along an edge is
obstructed.

As we explained in section 5.2, all takeoff points are connected to their
landing points by the minimal jump trajectory, provided that there is no
obstruction. Consequently the collision volume, that is used to test for
obstruction, is only composed of slices which are based on the minimal jump
trajectory. Thus the slices are an adequate representation of the jump collision
volume. In the next section we will discuss how obstructions of the minimal
jump trajectory are handled.

5.4 Handling Obstructions

As described in section 5.3, slices are tested for obstruction and a slice is
defined by a takeoff point, a landing point and the set of jump trajectories
connecting these two points. The result of the collision test is either that the
slice is not obstructed or that it is obstructed. In the following figures this
will always be represented by the colour of the slices. Green slices are free of
collision, while red slices are obstructed (see figure 40).

If a slice is obstructed, it means that all collision tests of all available jump
trajectories for this slice were tested positively for obstruction. As described

54

5.4 Handling Obstructions

jump trajectory

upper shifted
jump trajectory

slice collision
area

Figure 39: A slice collision area (gray) defined by a jump trajectory.

55

5 Jump into Polygon Test

Figure 40: Perspective view of a jump down with its unobstructed slices (green) and its
obstructed slices (red). The last tested jump collision area of every slice is rendered, which

means for blocked slices that always the longest jump trajectory is rendered in red.

56

5.4 Handling Obstructions

in section 4.4, the available trajectories of one slice are provided by the jump
trajectory lookup table. If at least one jump trajectory area is tested collision
free, the slice is marked green because a valid jump has been found. Because
the trajectories in the lookup table are sorted by their arc length, the first
obstruction-free jump that is found is always the best to be found.

Following the above, we have to handle two different types of obstructions
in the Jump into Polygon Test. First, an obstruction of all jump trajectory areas,
leaving the slice obstructed. And secondly, an obstruction which is just
partial, meaning at least one unobstructed alternative jump trajectory was
found. If an alternative jump trajectory is chosen because the minimal jump
trajectory does not connect the takeoff point and the landing point free of
obstruction, it is possible that the alternative jump trajectory is dissimilar to
its neighbours. We will now take a closer look at how to handle these types
of obstruction.

First, we will focus on the total obstruction of a slice. In the vast majority
of cases, if there is one obstructed slice, then there are also neighboring
obstructed slices. Their position at the takeoff edge can be at the end (see
figure 41(a)) or in the middle of the edge (see figure 41(b)) and of course there
can be multiple obstructions, which will be handled separately. Therefore,
we will focus on the handling of one obstruction.

If the obstructed slices are at the end of the edge we obviously want to
cut them off and shorten the length of the takeoff edge we are looking at.
As a result we will get a jump link that does not cover the complete outline
edge of the navigation polygon. In the case that there is an obstruction in the
middle of the edge, the agent cannot jump straight down here. Therefore,
we want jump links at both ends of the edge but no jump link in the middle,
so we cut the area with the obstructed slices out of the takeoff edge. The

57

5 Jump into Polygon Test

(a) Side obstruction leading to edge
shortening.

(b) Center obstruction leading to edge
split.

Figure 41: Renderings of two different obstruction scenarios.

two new takeoff edges (one on either side of the cut-out segment) will get
their own jump links. The position of the takeoff edges on the outline edge,
together with the rest of the jump link information, is stored as described
in section 4.7. The original navigation polygon outline edge, on which the
takeoff edges lie, is never changed. Basically we do the same no matter at
which position of the edge the obstruction lies; we cut off the obstructed area
and get several new edge segments from which we construct jump links.

As described above there are two different kinds of obstructions and now
we will take a closer look at the second kind. In this situation there exists an
obstacle over which we can jump with a higher jump. This is illustrated in
figure 42, in which the green coloured slices are based on the minimal jump
trajectory and the orange slices on an alternative jump trajectory.

If the slices have significantly different trajectories, the collision free vol-
umes that were found are also significantly different. This leads to the prob-
lem that it is not guaranteed that the resulting jump polygon can actually be
cross jumped because there are most likely obstructing objects in the dynami-
cally chosen jump path. Accordingly, we want more than one jump link to be
created. In order to create a proper jump link for the area with the alternative

58

5.4 Handling Obstructions

(a) side view (b) front view

Figure 42: Two different perspectives of dissimilar trajectories leading to edge split.

jump trajectories, we have to be sure that there is enough unobstructed space
for the jump. As described in section 5.3, the slices are a representation of the
jump collision volume which is a union of all single jump collision volumes.
Since we want the agent also to be able to jump along the two outer borders
of the later created jump link with the alternative jump trajectories, we have
to test a jump collision volume for this area. The area has to be extended to
make a jump along the outer borders possible and therefore we need to test
at least half an agent’s width beyond the outer borders of the future jump
link. As we do so, we also extend the takeoff and landing segments. The
newly created slices from the extension also have to be tested for collision.
As a result of this extension by half the agent’s width at both sides of the
edge, the tested volume will always be as wide as the agent or even wider.

Above we have seen how dissimilar jump trajectories caused by obstruc-
tions are handled. But up to now we have not gone into the handling of
dissimilar trajectories, which differ in their landing point positions. This will
be discussed in the next section.

59

5 Jump into Polygon Test

5.5 Handling Different Landing Points

There are two cases for landing points that need to be handled: On the
one hand if no landing point is found and on the other hand the landing
points which have a significantly different position than their neighbours.
This section will describe how we handle these different landing points. In
the Jump into Polygon Test this is done after the determination of the landing
points and before the slices, which represent the jump collision volume, are
tested for collisions.

The case in which no landing point is found means that the minimal jump
trajectory does not collide with anything, i.e. there is nothing below this part
of the takeoff edge near enough to jump down onto (see figure 43).

Figure 43: Sketch of a takeoff edge with takeoff points (pink circles) and their corresponding
landing points. The green landing points are marked with “Navigation Mesh” or “World

Geometry” and the red landing points are marked with “No Collision”.

In this situation we do not want to have a continuous jump link, so we cut
the takeoff points, which have no corresponding landing points, out of the
takeoff edge. If a segment is smaller than an agent’s width, it will be deleted.
With all other segments will be continued separately.

60

5.5 Handling Different Landing Points

Now we take a closer look at how different positions of landing points are
handled, so first of all we have to clarify what different positions of landing
points means. Let us take the example of a box standing on the floor under
the takeoff edge as illustrated in figure 44. The landing points are created
where the minimal jump trajectory hits the first collision. Following this
logic, the landing points that are created on the box are significantly higher
than the landing points that are created on the floor. This significant height
difference is the condition that is meant with different positions of landing
points.

Figure 44: Significant height differences in the landing points resulting in the construction
of three virtual edges.

Let us take a brief digression about the nature of navigation meshes. A
navigation mesh is constructed in a way so that the agent, for whom the
mesh is designed, can stay at every point inside of the mesh. In the situation
with the box on the floor this means that the navigation mesh has a gap. The
size of the gap is based on the width of the agent and as a result it has at
least half the agent’s width, both at the border of the lower navigation mesh
on the ground and at the border of the higher navigation mesh on the box.
Together, these two gaps are one gap with the whole width of the agent.

61

5 Jump into Polygon Test

With regard to our topic of the different landing point positions this means
that if there is a significant height difference between landing points, there
have to be two polygons in the navigation mesh separated by a gap. This
gap has to be at least as big as the agent is wide, implying that there have
to be some landing points, which were created because the minimal jump
trajectory collided with the world geometry.

Because of the gap and the resulting landing points on the world geometry
we can split the takeoff edge exactly between those two landing points that
differ in their height. We do not have to extend the segments due to the fact
that there are landing points outside of the navigation mesh, which cover at
least the agent’s width. As a result for the jump landing inside the navigation
mesh on the outermost point of the mesh towards the gap, it is guaranteed
that the jump space has been checked like for all other jumps. With each
segment of the takeoff edge that is big enough will be continued separately
by creating the slices which connect its takeoff and landing points.

5.6 Jump Link Generation

As we described in the sections above, we have created takeoff points along
a segment of the takeoff edge with corresponding landing points connected
by similar jump trajectories, which are free of obstruction. Now that we have
all of the aforementioned information, we can construct a jump link for this
takeoff edge.

The first step in constructing a jump link is to shrink the takeoff edge. As
described in section 5.2, we originally extended the takeoff edges, which have
not yet been split at that point, in order to determine the landing points. The
extension of the takeoff edge was necessary to guarantee that a jump along
every takeoff and landing position inside the jump link is possible. Thereafter
we created slices along the extended takeoff edge to test them for collisions.

62

5.6 Jump Link Generation

Therefore, we now have to shrink back the segment to ensure that a jump
along the outer border of the later generated jump link is unobstructed and
thus possible.

In the process of handling landing points with significantly different posi-
tions, we split the takeoff edge. As described in section 5.4, there has to exist
at least a minimal number of landing points marked with “World Geome-
try”, which add up to a total width of at least the agent’s width. For similar
reasons as for the previously mentioned extension of the takeoff edge, we
want the agent to be capable of jumping along the outer border of the later
generated jump link. That also means that the agent has to be able to stand at
the landing position and consequently the landing position has to lie inside
of the navigation mesh. If there are landing points that are not marked with
“Navigation Mesh”, the takeoff edge has to be shrunken until it only consists
of points whose corresponding landing points are marked with “Navigation
Mesh”.

Thereafter we can create a virtual landing edge. An edge has to be created
because the agent jumps down into a polygon, so there is no edge that
the agent could be landing on. But an edge for the landing is necessary to
integrate the connectivity logic of the jump link into the navigation mesh data
structure. We call this a virtual edge because it is no outline of any navigation
mesh polygon. A jump link is the connection between an edge segment of a
navigation polygon’s outline edge (takeoff edge) and a corresponding virtual
landing edge as described in section 4.7. All other information, such as which
trajectory connects a takeoff point with a corresponding landing point, the
slices and the takeoff and landing sampling points, will not be stored in the
jump link. Finally between these two edges a jump link could be constructed,
but before this is done, we will present the reverse test to check if an upward
jump is performable where the downward jump was found.

63

5 Jump into Polygon Test

5.7 The Upwards Jump Test

After a jump down has been found, a test to find the reverse jump up is
applied. The reason for only testing for upward jumps when a downward
jump has been found was described in section 4.6. Since we already have
the takeoff edge and the virtual landing edge of the jump down including
their sampled points, we can reuse these edges. The jump down takeoff edge
becomes the landing edge of the jump up and the virtual landing edge of the
jump down becomes the takeoff edge of the jump up. Therefore, the takeoff

and landing edge for a jump from the inside of a polygon onto the edge of
another polygon are given and even the takeoff points along the takeoff edge
as well as the landing points along the landing edge have previously been
constructed.

Figure 45: Jump up and down test resulting in a bidirectional jump link.

Thereafter, we only have to look up the trajectory connecting one pair

64

5.7 The Upwards Jump Test

of takeoff and landing points in the jump trajectory lookup table, build the
corresponding slice and test it for obstructions. The only difference to the
jump down is that the trajectories are fetched from the lookup table and
that there is no need to construct a virtual edge. The evaluation of the
unobstructed and blocked slices is also similar. If the jump up edges are
connected by unobstructed trajectories that are similar to the jump down
trajectories, the jump down link can be stored as a bidirectional jump link as
shown in figure 45.

Figure 46: A jump down link (orange) and a jump up link (yellow). The jump up cannot
reach the higher spots of the jump down, so they are both saved as directional links.

In case some slices of the jump up are obstructed or the trajectories are
significantly different from each other, the upward jump’s takeoff and land-
ing edge will be split in several parts, each generating a monodirectional

65

5 Jump into Polygon Test

jump link as visualized in figure 46. These jump links can finally be stored
as described in section 4.7. Thereby the slices and sampling points along
the takeoff edge and the virtual landing edge are discarded and only the
information along which segment of the edges jumps can be performed are
stored in the jump link.

5.8 Summary

This section gives a summary of the Jump into Polygon Test as illustrated in
figure 47. A more detailed figure, visualizing all steps of the Jump into Polygon
Test, can be found in the appendix A. That test generates jumps of the class
jump from edge into polygon and of the class jump from polygon onto edge, which
informally would be called jumps down and jumps up.

The Jump into Polygon Test has a given takeoff edge to which a jump down
link should be generated. First, the corresponding landing points, based
on the given takeoff points, are constructed. Afterwards the takeoff edge is
split into smaller takeoff edges if takeoff points do not have corresponding
landing points or if the landing points have a significantly different position.
For each of these takeoff edges, a collision volume, represented by slices,
is tested for collision. In the case that the minimal trajectory for a slice
is obstructed, alternative trajectories are acquired with the jump trajectory
lookup table. Thereafter, obstructions that block all trajectories of a slice
or lead to significantly different jump trajectories cause a takeoff edge split.
Then for every takeoff edge the corresponding landing edge is created. Now
the jump down calculation is completed.

Thereafter, for every jump down that has been found, a jump up is cal-
culated. The downward jump’s takeoff edge becomes the landing edge and
the virtual landing edge becomes the takeoff edge. Both edges already have

66

5.8 Summary

Upward Jump

Downward Jump

Collision Test

Construction of Takeoff and

Landing Points

Handling Non-existing & Differently

Positioned Landing Points

Generation of Jump Links

Handling Collisions &

Different Jump Trajectories

Collision Test

Handling Collisions &

Different Jump Trajectories

Swapping Takeoff & Landing Edge

Figure 47: Overview flowchart of the Jump into Polygon Test.

67

5 Jump into Polygon Test

takeoff and landing points. The jump down test starts with the slice con-
struction on the basis of dynamically looked up jump trajectories from the
jump trajectory lookup table. After that it works the same way as the jump
down test.

Finally, jump links can be generated. Based on the results of the jump
down, the jump up has been tested and the jump links have been stored in the
navigation mesh as monodirectional or bidirectional jump links. Therewith
the Jump into Polygon Test is concluded.

68

6 Jump onto Edge

6.1 Introduction

The previous section described the Jump into Polygon Test, which finds down-
ward jumps from an edge into a polygon and upward jumps from a polygon
onto an edge. The Jump onto Edge Test, which we will focus on throughout
this section, finds long jumps between two outlines of the navigation mesh.
Those jumps are needed for example to jump over a canyon or from one
roof of a house to another. Furthermore, we will see how the complete jump
trajectory lookup table, which was explained in section 4.4, will be used.
In comparison to the Jump into Polygon Test, the Jump onto Edge Test has a
takeoff edge and a landing edge. They are outline edges of the navigation
mesh of different polygons. To find most jumps, it is reasonable to test one
takeoff edge against all outline edges of other polygons of the navigation
mesh which are within range of the maximum jump width.

6.2 Preprocessing of the Two Edges

We iterate over all pairs of outline edges of the navigation mesh polygons
with the maximum jump range as the first constraint and the ones that need
to be tested are passed to the Jump onto Edge Test as input parameters. The
first step of the Jump onto Edge Test is the preprocessing of the edges. The
takeoff edge as well as the landing edge are the input for this test, but we
cannot expect possible jumps to be there between all pairs of takeoff and
landing edges. The preprocessing will quickly reject edges between which
no jump can be found or clip the edges as it is useful for the further test.

The Jump onto Edge Test finds jumps that connect two different polygons
with each other. Of course we are looking for believable jumps, which means

69

6 Jump onto Edge

that we want to connect the polygons in such a way that their facing edges
are connected by jump links. We will now have a look at how the takeoff

edge and the landing edge are positioned to each other and what it means if
they are facing each other.

Figure 48 shows some examples of pairs of takeoff and landing edges
which are not facing each other. As we can see in figure 48(a) the normals
of the edges are pointing away from each other. We do not want to test this
constellation for a possible jump, because if there are connections between
the polygons, there are better ones covered by the Jump into Polygon Test or
other edge pairs for the Jump onto Edge Test.

(a) Takeoff and landing
edge are facing away from

each other.

(b) Landing edge behind
takeoff edge facing in the

same direction.

(c) Landing edge in front
of the takeoff edge facing

in the same direction.

Figure 48: Edge pairs of a takeoff edge (pink) and a landing edge (violet) that are not facing
each other with their normals shown as arrows.

Figure 48(b) represents the possible situation of the takeoff polygon lying
over the landing polygon, so that the Jump into Polygon Test should be applied
to find a jump from the takeoff to the landing polygon. The found jump down

70

6.2 Preprocessing of the Two Edges

would be shorter and thereby more believable than a jump from the takeoff

edge to the landing edge. Considering that the landing edge is an outer edge
of the navigation mesh, it is most probable that after an edge onto edge jump
the agent would even walk back to the left, or in other words he would walk
back into the direction where the jump started.

The same placing of the polygons but with switched takeoff and landing
edge is shown in 48(c). In this situation we are testing for a jump from the
lower polygon with the takeoff edge up to the polygon with the landing
edge. A jump from the takeoff edge over the polygon with the takeoff edge
to the landing edge is not an upward jump like we would expect it. What
we are looking for is the reverse jump of the downwards jump as upwards
jump.

We want to find jump links between edges that are facing each other. This
means that all landing edges which are lying entirely on the same side of
the takeoff edge as the takeoff polygon will be rejected. That is because in
order to jump from the takeoff edge onto such a landing edge, the agent
would have to jump down through the takeoff polygon, which obviously
is impossible, or jump up over the takeoff polygon. Correspondingly, all
takeoff edges which are lying entirely on the same side of the landing edge
as the landing polygon will also be rejected.

Once we know that the takeoff edge and the landing edge are facing each
other and therefore have not been rejected, we can extend the edges. The
navigation mesh is constructed in such a way that the agent can stand at
every point inside of the mesh. Similar to this fact we want every jump
inside of a jump link to be possible, so especially the jumps along the outer
borders of the jump link must also be possible. Therefore, we have to test
the space beside the actual jump link for collision, which is achieved by

71

6 Jump onto Edge

extending both edges at their two terminal points by half an agent’s width.
After this blind extension of the edges, we clip the edges depending on their
positioning to each other.

Let us take a closer look at a situation in which the projection of takeoff and
landing edge into the horizontal plane, which contains the origin, intersect
each other. In figure 49 an example of this situation with a pink takeoff edge
and a violet landing edge is visualized. The takeoff edge does not completely
lie on the same side of the landing edge as the landing polygon. The same
holds for the landing edge, meaning that these edges are partially facing each
other. In this example we want to get two different jumps: At the right end
of the takeoff edge we expect a jump down into the landing polygon, while
on the left side of the takeoff edge we want to find a jump towards that part
of the landing edge which is not lying beneath the takeoff polygon.

In this example one can see clearly that the right side of the takeoff edge
lies on the same side of the landing edge as the landing polygon, namely
over the landing polygon, and will therefore not be connected by a jump
found via the Jump onto Edge Test. The same applies to the part of the landing
edge beneath the takeoff polygon, because it lies on the same side of the
takeoff edge as the takeoff polygon. Providing that we do not need these
parts (dashed line segments in figure 49) for further computations, we clip
them off the takeoff and landing edge.

After these described parts of the preprocessing we know that the takeoff

and landing edge are facing each other and that the edges have been clipped
to the facing parts. But there is another clipping which is part of the prepro-
cessing that we call clipping by the mapping angle. As the name indicates it
has something to do with the mapping, which will be described in section 6.3.

72

6.2 Preprocessing of the Two Edges

(a) perspective view

(b) top view

Figure 49: Two quadrangles partially overlapping each other with the facing parts as solid
lines, which are the takeoff edge (pink) and the landing edge (violet). The clipped off parts

are dashed.

73

6 Jump onto Edge

Here we just take a look at this sort of clipping and later we will come back
to it and describe the reasons for the clipping by the mapping angle.

mapping angle

mapping angle

takeoff edge
clipping half-line

clipping half-line

extended
takeoff edge

la
n
d
in

g
ed

g
e

clipped part
of landing
edge

Figure 50: Sketch of the clipping by the mapping angle.

In figure 50 we can see a takeoff edge and two clipping half-lines each
starting at an end point of this edge. The angle between the extension of
the edge and one of the clipping half-lines is the mapping angle. The size of
this angle is defined by the user and we usually use a mapping angle of 15◦.
The landing edge is clipped at its intersections with the two half-lines. As
a result, only the part of the landing edge that lies inside the green-shaded
area in figure 50 will be used for the further computations. Thus, the bigger
we define the mapping angle, the more will get clipped off the other edge.
The clipping by the mapping angle is done for both edges as described above
for the landing edge as well as for the takeoff edge in the same manner. This
is the last step of the preprocessing and the next step in the Jump onto Edge
Test is the mapping, which we will take a closer look at in the next section.

74

6.3 Mapping

6.3 Mapping

6.3.1 Mapping of One Edge onto the Other

We have seen in the Jump into Polygon Test that by determining the landing
points, we have not just created landing points, but we have also mapped
the takeoff edge onto a virtual landing edge defined by the landing points.
In the Jump onto Edge Test we have two given edges, so the mapping has to
be done in another way. Through this mapping we will also determine the
takeoff points and the landing points. The given edges can vary enormously
in length and are not parallel in most of the cases, which leads to a totally
different mapping situation in comparison to the Jump into Polygon Test.

Let us look at the properties of the mapping connections of two different
kinds of mapping. These mapping connections, that are line segments which
each connect one point of the takeoff edge with one point of the landing edge,
will be used to create the collision volume. We want them to be equally
distributed in the gap between takeoff and landing edge, so they must not
cross each other. Therefore, these connections can be parallel or non-parallel,
as long as they do not cross each other in-between the takeoff and landing
edge.

As we can see in figure 51, the non-parallel mapping connects the corre-
sponding points of the takeoff and landing edge, meaning that it connects
the left end points of both edges, the centre points of both edges and so on.
One problem about this kind of mapping is that the mapping connections
do not reflect the distance between the edges very well, which is visualized
in figure 51(a). Therefore, just a small part of the upper edge would be con-
nected by a jump link, because the rest of the connections are longer than
the maximal jump width. An additional drawback lies in the fact that even

75

6 Jump onto Edge

the part of the upper edge where the connection distance is small enough
could be smaller than the agent is wide, so that no jump link at all would
be found for this edge. With this non-parallel mapping it would thus be
possible that in a situation like the one in figure 51(a), no jump link would
be created although several jumps are possible for the agent. In figure 51(b)
we see a situation, in which an obstruction blocks a lot of the connections
between the two edges. Thereof only a small part of the upper edge can be
freely connected.

jump link

(a) Mapping error caused by mapping connections
exceeding the maximum jump length.

jump link

(b) Mapping error caused by an obstruction.

Figure 51: Problems that occur when using non parallel mapping.

76

6.3 Mapping

Because of all these drawbacks of the non-parallel mapping we now take a
closer look at the parallel mapping. Parallel mapping simply by its definition
does not have the problem of finding connections of different length between
two parallel edges. Still, there are other drawbacks we have to discuss.

If the mapping connections are parallel, we first think of connections that
are perpendicular to one of the two edges. But this obviously bears problems
when the two edges have a different length. Then it would only be possible to
map the area straight in front of the smaller edge. Furthermore, there would
be no mapping connections found at all if the second edge is not positioned
straight in front of the edge from which we start the perpendicular mapping.
So what we need is a mapping with parallel connections that are oriented
towards the edges. The mapping that we use starts with the connection of
either the left or the right end points of both edges, as shown in figure 52,
and all following connections are parallel to this first constructed connection.
We call this type of mapping the end point mapping.

fir
st

m
ap

pi
ng

co
nn

ec
ti
on

Figure 52: Parallel mapping starting at the left end points of the edges.

Until now we have not yet determined which edge shall be mapped onto
the other edge. The next section will describe the two cases of the takeoff

edge being the domain and the landing edge the codomain for the mapping
and the other way round.

77

6 Jump onto Edge

6.3.2 Domain and Codomain for the Mapping

As explained before, we want to have a mapping from one edge to the other
in order to get parallel slices. First though, we have to decide whether the
takeoff edge shall be mapped onto the landing edge or the other way around.
In addition this section will discuss what happens if the edges are varying
enormously in length.

In figure 53 we can see the result of mapping the larger edge onto the
smaller edge. In fact, we would receive several mapping connections that
do not hit the smaller edge, which would result in the red marked part of the
larger edge being not included in the jump link. On the other hand, we have
the advantage that the smaller edge is completely covered with connections.

Figure 53: Parallel mapping of the larger edge (violet) onto the smaller edge (pink).

Now we examine how it looks the other way around. If we mapped the
smaller edge onto the larger edge, a part of the larger edge will obviously
not be covered by connections. To avoid this uncovered part we can simply
do several mappings after each other. This multiple mapping of the smaller
edge onto the larger edge is illustrated in figure 54. To construct the first
connection of the second mapping we use point s0 of the smaller edge and
the point p0, at which the first mapping ended, on the larger edge. The
further mappings are done using the same pattern.

78

6.3 Mapping

first
mapping area

S0 S1

L0 L1P0

(a) first mapping

second
mapping area

S0 S1

L0 L1P0 P1

(b) second mapping

third
mapping area

S0 S1

L0 L1P1

(c) third mapping

Figure 54: Mapping of the smaller edge (pink) onto the larger edge (violet).

79

6 Jump onto Edge

With this kind of multiple mapping we still have an area in which the
connections do not hit the other edge (in figure 54 the right part of the third
mapping). Still, it has a big advantage over the mapping of the larger edge
onto the smaller edge: Assuming that the smaller edge is the takeoff edge,
the agent can jump onto the left sideas well as the right side of the landing
edge. This would not be possible with a single mapping of the larger edge
onto the smaller edge.

As we have seen above, the smaller mapping edge is totally covered with
connections by the first mapping while the larger mapping edge is only partly
covered. This leads us to the criterion for the determination of the smaller
mapping edge. Let an end point mapping start on one side of the edge, then
this edge is the smaller edge if the line, that is parallel to the first constructed
connection and passes through the other end point of this edge, intersects
the other or in this case the larger mapping edge. If there is no intersection
it means that the edge we started off with is the larger mapping edge.

From this distinction of the edges we derive the following test for differen-
tiation. From now on we denote the larger mapping edge as the edge whose
end point (S1 and L1) has the longest distance to the line defined by the first
mapping connection (S0L0). This edge is called codomain. The other edge,
which is the domain, is called the smaller mapping edge. Consequently it is
possible that the edge with the smaller length is the larger mapping edge, as
we can see in figure 55. The point S1 from the smaller mapping edge is closer
to the first mapping connection than the point L1 from the larger mapping
edge. Therefore, the pink edge is the smaller mapping edge with a length of
4.11cm, whereas the violet edge is the larger mapping edge with a length of
3.39cm.

Now that we know how the mapping of the smaller mapping edge onto
the other edge works, let us revisit the issue of the clipping by the mapping

80

6.3 Mapping

sm
all

er
m

ap
pin

g
ed

ge

la
rg

er
m

a
p
p
in

g
ed

g
e

first connection of
first mapping area

S0

S1

L0

L1

Figure 55: Determination of the smaller and the larger mapping edge.

angle, which we have already described in section 6.2. Through the end
point mapping we can be sure that the first connections after the first defining
connection hit the other edge. But for example if the edges are perpendicular
to each other, like in the situation in figure 56(a), the first defining connection
would simply be an extension of the vertical edge onto the left endpoint of
the horizontal edge. The first mapping would then map the complete upper
edge onto this point of the horizontal edge and even the second mapping
would map everything onto this one point. To avoid this situation and to
avoid mapping one edge onto a very small part of the other edge, we clip
the edges by the mapping angle as shown in figure 56(b).

6.3.3 Two-Sided Mapping

In the previous section we have seen that the end point mapping of the
smaller mapping edge onto the larger mapping edge does not completely
cover the larger mapping edge. As we have mentioned before, to completely
cover the larger mapping edge we need to do multiple mappings. In this
section we will discuss how the multiple mappings can be positioned so that

81

6 Jump onto Edge

first
mapping area

(a) unclipped results in false
mapping area

first
mapping area

(b) clipped results in valid
mapping area

Figure 56: Sketch illustrating the necessity of the clipping by the mapping angle.

82

6.3 Mapping

the larger mapping edge is completely covered by connections.

Figure 57 presents a mapping which has started at one side and is contin-
uously extended along the larger mapping edge. In this example the first
mapping completely hits the larger mapping edge, but of the second map-
ping just the green connections hit the larger mapping edge while the red
connections do not. Obviously there are some connections that we do not
have to compute. Let us have a look at what this kind of one-sided mapping
would mean for the jump links.

first mapping area second mapping area

Figure 57: Mapping from the smaller edge (pink) onto the larger edge (violet) with an
overhanging second mapping area.

For this example we want one jump link to be generated that covers the
complete upper and lower edge and that works both ways, meaning that it
does not matter which edge is the takeoff edge and which one is the landing
edge. The section 6.4 will describe exactly how we test the jump volume
between two edges for collisions, but it will be briefly described here for a
better understanding: We will construct slices, similar to the Jump into Polygon
Test, along the connections of the mapping and test them for collision. As a
last step we will merge jump collision volumes which correspond to the areas
covered by the first, second, third etc. mapping, which will be described in
more detail in section 6.5.

83

6 Jump onto Edge

first mapping area

first jump
collision volume

second mapping area

second jump
collision volume

Figure 58: Issue with merging jump collision volumes of one-sided mapping.

For our current example this means that the first mapping will be com-
pletely converted to a jump collision volume whereas for the second map-
ping, that only partly hits the larger mapping edge, we will only convert the
area with the connections that do hit the larger mapping edge into a jump
collision volume. If we simply united these two jump collision volumes to
get one jump link, we would include the area that is marked with the red
triangle in figure 58. The problem about the area is that it has not been tested
for collision and we clearly do not want a jump link with an untested area.

A straightforward solution to this problem is the two-sided mapping. In
comparison to the one-sided mapping, that starts with the end points on one
side of the edges and then continuously maps from this direction, the two-
sided mapping starts at both sides of the edges. This is visualized in figure 59.
The two-sided mapping basically consists of two one-sided mappings, which
start at the opposite end points of the edges. The two one-sided mappings
will be calculated alternating, so they both progress towards the middle of
the larger mapping edge until they meet or overlap. This way we do not
have connections that do not hit the larger mapping edge, but we can have
overlapping mappings in the middle of the larger mapping edge.

The mapping areas of the two-sided mapping represent the jump collision
volumes, as shown in figure 60, which connect the complete smaller mapping

84

6.3 Mapping

first mapping area

(a) first mapping area

second mapping area

(b) second mapping area

third mapping area

(c) third mapping area

Figure 59: Two-sided mapping and its resulting mapping areas.

first jump area second jump areathird jump area

Figure 60: Combined resulting jump collision volumes correlating to figure 59.

85

6 Jump onto Edge

edge to parts of the larger mapping edge. In the next section we will see how
these jump collision volumes are tested for collisions.

6.4 Jump Collision Volume Test

In this section we will see a lot of similarities to the Jump into Polygon Test,
such as the representation of the jump collision volume by slices and the
construction of the slices with the jump trajectory lookup table. These sim-
ilarities occur because just as in the Jump into Polygon Test, we want to find
possible jumps and test their volume for collisions and these are tools we
use to accomplish this. The following steps are done for each mapping area
individually.

The first step towards the slice representation of the jump collision volume
is the sampling of the mapping area, which is visualized in figure 61. This
means that we sample the smaller mapping edge and the part of the larger
mapping edge that belongs to the current mapping area. The amount of sam-
ple points is determined by the width of the mapping area. Then the takeoff

sample points as well as the landing sample points are equally distributed
along the edges of this mapping area. A takeoff point and the landing point
vis-a-vis to this takeoff point form a pair which will be used to construct a
slice.

To construct a slice, we need not only the pair of sample points but also
a jump trajectory connecting these points. As in the Jump into Polygon Test
we use the jump trajectory lookup table to find a trajectory according to
jump width and jump height defined by this pair of sample points. In the
Jump into Polygon Test all sample points were sampled along the jump down
trajectory, so the jump trajectory table was only used to find alternative
trajectories. Now the lookup table is actually used to its full extent by
providing connecting trajectories for all possible sets of takeoff and landing

86

6.4 Jump Collision Volume Test

(a) first mapping area

(b) second mapping area

Figure 61: Top view renderings of two mapping areas and the sample points of the
corresponding jump collision volumes.

87

6 Jump onto Edge

points as well as alternative trajectories. The slice is constructed exactly
the same way as in the Jump into Polygon Test. The surface of a slice is the
area between the jump trajectory and an upwards-shifted copy of the jump
trajectory. The shifted trajectory is translated by the height of the agent.
The next step is to test this slice for collision, and if the slice is not free
of obstruction, another slice with an alternative trajectory from the jump
trajectory lookup table is created and tested. A slice is considered as blocked
if there does not exist a jump trajectory in the lookup table that leads to a
collision-free slice. In figure 62 a jump collision volume with its slices is
visualized.

After all slices of one jump collision volume are tested for collision, the next
jump collision volume is tested and so forth, until all jump collision volumes
between the takeoff edge and the landing edge are tested for collision. The
next step in the Jump onto Edge Test is the postprocessing, which will be
described in the following section.

6.5 Postprocessing of the Jump Collision Volumes

6.5.1 Merging of Jump Collision Volumes

In the previous sections we have seen the transition from a takeoff edge
and a landing edge over the mapping areas to the jump collision volumes,
which are represented by tested slices. This section will finally describe
the generation of the jump links based on the jump collision volumes. A
straightforward way of generating jump links is to convert every jump col-
lision volume into one jump link. The jump collision volumes are based
on the mapping areas which are constructed during the mapping process.
Since we chose multiple mappings for this process, the resulting number of
mapping areas leads to that same number of jump collision volumes. The

88

6.5 Postprocessing of the Jump Collision Volumes

(a) first jump collision volume

(b) second jump collision volume

Figure 62: Perspective view of two jump collision volumes with their slices.

89

6 Jump onto Edge

multiple mapping areas between a takeoff and a landing edge are visualized
in figure 59, and figure 62 shows all jump collision volumes represented by
their slices between that takeoff and landing edge. By this straightforward
generation of jump links we would get a lot of jump links between one pair
of takeoff and landing edge. Since we obviously want as few unnecessary
jump links as possible between two edges, it would be optimal to get only
one jump link which completely covers both edges, provided that there are
no obstructions. Let us look more closely at the merging of jump collision
volumes into a new fused jump collision volume.

In this section we only consider edges with jump collision volumes that
have no blocked slices and no slices that are significantly different from
each other. In figure 62 we can see two adjacent jump collision volumes.
These two volumes are designed to represent the volume in which all jumps
between their parts of the takeoff edge and landing edge are performed by
the agent. As we can see in figure 63, the two jump collision volumes do not
just overlap, but rather the union of them describes a continuous volume.
This merged jump collision volume is an adequate representation for all the
jumps between united parts of the takeoff edge and the landing edge.

The merged jump collision volume consists of the union of the source jump
volumes as well as of the union of the source edge parts. Because the merged
volume has already been tested for collision, there is no need to change the
representation of the volume from a set of sets of parallel slices to something
else. The conditions for the merging are that the jump collision volumes
are free of obstruction and that they are adjacent so that both the resulting
merged volume and the united part of the larger edge are continuous. If
these conditions are fulfilled, two or more jump collision volumes can be
merged to a new jump collision volume.

90

6.5 Postprocessing of the Jump Collision Volumes

Figure 63: Perspective rendering of a merged jump collision volume which is based on two
unobstructed jump collision volumes.

After the merging of the jump collision volumes there is one last step
before the jump links are generated. We have to shrink both edge segments
of the jump collision volume at both end points by half an agent’s width
to guarantee that all jumps inside this shrunken volume are possible. The
shrinking and the generation of the jump links is done both for merged and
non-merged jump collision volumes.

6.5.2 Handling Obstructed Slices

In the last section we have seen the merging of jump collision volumes that
are free of obstruction. In this section we will explain why jump collision
volumes which contain obstructed slices are not merged and how they are
processed. First we will discuss why obstructed jump collision volumes can
not be merged with unobstructed jump collision volumes.

Figure 64 shows an example of two adjacent jump collision volumes. The

91

6 Jump onto Edge

left volume is unobstructed whereas the right volume contains blocked slices.
In this example we consider only jump collision volumes from one side of the
mapping. The second jump collision volume with the blocked slices could
be split into two segments: One containing all the unobstructed slices to the
left and the other containing all obstructed slices and the unobstructed slices
to the right. The straightforward idea is to merge the left part of the second
jump collision volume with the first jump collision volume, which is totally
unobstructed. If we merge these volumes, we would get a new volume
that includes the complete smaller mapping edge, which is visualized as the
upper edge (pink) in figure 64. The orange marked segment of the larger
edge is merged to become the second edge of the new volume. The generated
jump link would contain the area marked by the yellow triangle in figure 64.
This is the area the obstruction is located in. The slices of the merged jump
collision volume do not cover the red area, so this area is not part of the two
volumes which have been merged. Thus, the merged volume is not a union
of the two free jump collision volumes. This example shows that a general
union of unobstructed jump collision volumes with the unobstructed parts
of a jump collision volume that contains blocked slices can lead to partially
blocked jump links. Therefore, we convert obstructed jump collision volumes
separately to jump links and we do not merge them.

The handling of jump collision volumes with blocked slices is based on the
same steps as the handling of obstructions in the Jump into Polygon Test. The
first step is the splitting of the jump collision volume so that all obstructed
slices are cut out. All resulting new jump collision volumes are shrunken by
half an agent’s width at each end point. This is done in order to guarantee
that all jumps inside the jump link and especially the jumps along the outer
borders of the jump link are possible.

These jump collision volumes are further tested for significantly different

92

6.5 Postprocessing of the Jump Collision Volumes

first jump
collision volume

second jump
collision volume

Figure 64: Example why a partially obstructed jump collision volume can not be merged
with other volumes.

jump trajectories and if necessary processed as it will be described in the next
section. Afterwards, these jump collision volumes will generate jump links
but they will never be merged with any other jump collision volumes.

6.5.3 Handling Significantly Different Jump Trajectories

Obstructions in the area of a jump collision volume can not only result
in blocked slices but also in the construction of a number of slices with
alternative jump trajectories. These slices can have a significantly different
jump trajectory in comparison to their neighbours next to the obstruction. In
that case the jump collision volume is not steady. As outlined in the Jump
into Polygon Test these slices with the significantly different jump trajectories
have to be separated from the rest of the steady jump collision volume.

Accordingly, we split the jump collision volume so that the resulting parts
all represent a steady volume. For these parts the merging problem of the
blocked slices takes effect, thus prohibiting us to merge the resulting jump
collision volumes. Therefore, we process all new jump collision volumes of
the splitting separately. This processing is done the same way as in the Jump

93

6 Jump onto Edge

into Polygon Test and is concluded by creating a finalized jump link for each
jump collision volume.

6.6 Summary

The Jump onto Edge Test is one of the two tests to generate jump links. It
does so between pairs of edges, and the created jump links visually remind
of long jumps. The steps of the test, all described throughout this chapter,
can be found in a detailed diagram in the appendix A. This section and the
figure 65 give a brief summary of the Jump onto Edge Test.

Mapping Edge to Edge

Preprocessing the Edges

Merging Jump Areas

Testing Collision

Figure 65: Overview of the Jump onto Edge Test.

The first step is the preprocessing of the given takeoff edge and the given
landing edge. These edges are rejected if they are not facing each other.
The edges are mapped onto each other starting from both sides of the edges
towards the centre of the larger mapping edge. With the sample points from
the mapping areas slices are constructed based on trajectories from the jump

94

6.6 Summary

trajectory lookup table. These slices are tested for collision and thus they
represent the jump collision volume. The jump collision volumes are used to
create jump links. Depending on the volume’s obstruction, the jump collision
volumes are handled separately or merged with adjacent volumes. Each
jump collision volume will generate a jump link that stores the information
from which part of the takeoff edge to which part of the landing edge jumps
are possible.

95

96

7 Results

7.1 A Robust Solution for an Optimized Search Space

The Jump into Polygon Test and Jump onto Edge Test form a solution that works
robustly and well within the optimized search space which was defined in
section 4. Before we discuss the impact of the jump links on the navigation
mesh, let us have a look at the different test environments that have been used
to evaluate the implemented prototype. We generated jump annotations for
seven different maps of the video game Counter-Strike: Source [Val13]. In
the appendix B on page 140, textured images of these tested maps can be
found. The maps “cs_desperados”, “cs_east_borough”, “cs_parkhouse” and
“de_alexandra2” are mostly outdoor maps, whereas “cs_abbey”, “cs_ office_-
unlimited” and “de_corse” mainly feature narrow urban surroundings.

Figure 66: A car as an example of two unconnected islands.

97

7 Results

Figure 67: A jump over the railing of a fire escape as a shortcut example.

Figure 68: A jump as an alternative path to the stairs.

98

7.1 A Robust Solution for an Optimized Search Space

In section 3.1 we distinguished three different kinds of jumps we wanted
to find. All of these kinds of jumps are found by the solution presented
in this thesis. Figure 66, 67 and 68 show examples of the three kinds of
wanted jumps from the test environment “cs_east_borough”, which will be
presented more detailed in the next section. There are actually a lot more
jump links possible in these examples but we deliberately only show the
once we need to make the examples clear.

Figure 66 illustrates a jump between two unconnected islands, where one
is the ground and the other one is the top of a car. The jump up onto the
engine bonnet and the jump down from the car boot connect the navigation
mesh of the ground with the part of the navigation mesh on the top of the
car. Figure 67 visualizes a shortcut jump along a fire escape. A jump down
over the railing onto the ladder bypasses the longer way around the corner
to the landing position on the ladder. Finally, figure 68 shows a jump over a
low wall and a dumpster as an alternative path to the staircase.

The solution even discovers jumps in very complex situations, like the one
shown in figure 69. Finding and constructing jump links in such a complex
geometry shows that the solution presented in this thesis is highly robust. In
order for the tests to be able to handle the multitude of different situations
in arbitrary environments, a robust solution is obviously needed, but only
by the means of the trajectory lookup table and intelligent handling of edge
mapping and splitting, it is possible to consistently find large numbers of
different jump links. The figures 70, 71, 72 and 73 show the quality and
additional movement capabilities that the generated jump links provide in
different complex scenarios. Specifically the most valuable and beneficial
jump links have been rendered for clarity.

These screenshots show again that we build the jump links as surfaces,
which is good for path smoothing and dynamic usage of the data, whereas

99

7 Results

Figure 69: A jump through a narrow gap between the roof and the chimney.

100

7.1 A Robust Solution for an Optimized Search Space

Figure 70: Several jump connections from one roof to another building’s roof, granting the
agent access to an otherwise unreachable area.

Figure 71: Downward jumps allowing the agent to jump down from the roof over the
balconies onto the ground.

101

7 Results

Figure 72: Jumps down through the awning showing the detail in which jump connections
are found.

Figure 73: A normally not traversable broken staircase can now be passed by jumping up
and down the crates.

102

7.1 A Robust Solution for an Optimized Search Space

(a) side view

(b) perspective view

Figure 74: A complex test scene, that shows specific strength of our solution by finding
multiple obstacle avoiding jump links.

103

7 Results

Quake III Arena and Brink only find point to point connections that can only
be used one way and often store redundant information. Also Quake III
Arena and Brink only find jump down connections where the edges perfectly
vertically overlap, whereas we find downward jumps also over gaps and
slopes as shown in figure 74. The two jump down connections evade the
pillar in the middle, jump over a slope and the left one jumps higher to get
over the obstructing box. None of the state of the art solutions is able to evade
the box by using alternative trajectories, which is clearly beneficial because
that is why our solution finds the left jump down. The number of possible
jump trajectories of the state of the art solutions is so small that they almost
never find multiple connections from one edge. Because our solution has
quick access to many alternative trajectories through the trajectory lookup
table, we find multiple jump links for one edge when possible. This results
in well connected edges like again shown in figure 74 where the edge from
which the jump down links start also jump up onto the higher platform.

When comparing the screenshots of figure 75 it is visible that the Killzone 3
implementation finds clean jumps but finds a lot less jumps then the imple-
mentation of this thesis. Most obvious are the upward jump links (yellow)
and the width of downward jump links (orange) on the left side among the
roofs and the additional diagonal jumps (green) near the chimney at the left
and the ones that connect the center roof with the neighbouring roofs.

7.2 Study of Jump Link Generation Configurations

All computations were done with the same hardware and the same software
settings. The processor used for the calculations was an Intel Core i5-3470
CPU @ 3.20GHz. The software settings include values to define the jump
properties, so that jumps can be adjusted to human-like jumps or for example
to fit the abilities of a supernatural agent. This way one can get optimal results

104

7.2 Study of Jump Link Generation Configurations

(a) Killzone 3 [Mon12].

(b) Implementation of this thesis.

Figure 75: A comparison between the jumps found with the Killzone 3 implementation (a)
and the implementation presented in this thesis (b).

105

7 Results

for a specific scenario as described in section 3.1. The jumps an agent should
be able to perform are stored in the jump trajectory lookup table as described
in section 4.4. The lookup table itself as well as the variables for the filling of
the table are all tunable by the user. The jump-defining values are the takeoff

angle interval, which measures from 1◦ to 89◦ with a step size of 0.1◦, and
the values for the takeoff velocity interval measuring from 0.5m

s to 6.0m
s with

a step size of 0.1m
s . Another tunable value is the maximal fall depth of an

agent, which will be four meters for the following calculations. Additionally,
we have values that define the width and height interval mapped to one cell
of the jump trajectory lookup table. For the following calculations, both the
width and the height interval are 0.1 meters. Finally, there is a value for
the mapping angle, which has been described in section 6.2. All of these
variables allow us to configure the jumps and the jump trajectory lookup
table for specific situations in order to obtain the desired results.

With the above mentioned variable settings for the jump trajectory lookup
table, nearly 49 000 different jump trajectories are stored in the table. But the
number of different jump trajectories alone does not necessarily have an im-
pact on the number of found jumps. For example, an angle and velocity step
size of 0.2◦ respectively 0.2m

s result in approximately 12 000 different jump
trajectories, which is a quarter of the previously used trajectories. However,
for the number of generated jump links on the map “cs_desperados” this
results in only 4.6% less jump links.

By contrast, if the maximal velocity is reduced to 4.0m
s , the number of

different jump trajectories only shrinks to around 32 000 but this results in
37.2% fewer generated jump links on the test environment “cs_desperados”.
Obviously there exists a coherence between the velocity and the jump width,
concluding that a reduced maximal velocity results in a smaller maximal
jump width. So there are not just lower numbers of trajectories in the jump

106

7.2 Study of Jump Link Generation Configurations

(a) jump velocity 4.0 m
s . (b) jump velocity 6.0 m

s .

Figure 76: The “cs_desperados” test environment with all found jumps, each with a
different maximal jump velocity.

107

7 Results

trajectory lookup table, but there are more empty cells in the area of the
lookup table that features trajectories with long jump widths, which corre-
sponds to the smaller maximal jump width. Overall this adds up to the
conclusion that not the number of different jump trajectories is most mean-
ingful for the generated jump link count, but rather the amount of filled cells
of the jump trajectory lookup table has an immense impact on the amount
of found jump links. In numbers, a jump trajectory lookup table with a
maximal velocity of 4.0m

s has 865 filled cells while a table with 6.0m
s maximal

velocity has 2048 filled cells, meaning that the first table has around 41.5%
fewer cells filled. Figure 76 shows these circumstances with respect to the
map “cs_desperados”.

(a) An correct trajectory resulting from a Lookup table
width and height interval of 0.1m.

(b) An incorrect trajectory resulting from a lookup
table width and height interval of 10.0m.

Figure 77: Two jump links generated with different width and height intervals of the jump
trajectory lookup table, illustrating the error (b) that can occur if the cell interval is too

large.

From now on the jump trajectory lookup table is always created with
6.0m

s as maximal velocity. In figure 77 two jump links are visualized, these
jump links are generated with different width and height interval sizes of the

108

7.3 Quantitative Evaluation

jump trajectory lookup table. As illustrated in figure 77(b) a large interval
size causes a jump trajectory that would normally overcome just a small
horizontal distance is falsely stretched to overcome a big gap. This trajectory
does not look natural nor believable, so it is undesired. On the other hand a
very small width and height interval of the jump trajectory table, especially
with greater step sizes for the angle and velocity, could create table cells
which are empty between filled cells. This could produce issues if for one
pair of takeoff point and landing point no connecting trajectory is found.
This means when the cell size is reduced, the step sizes of the angle and
velocity have to be decreased, so when the table is filled it is guaranteed
that every cell has entries. Concluding, the width and height interval have
to be adapted to all other user defined variables. As default value for the
jump trajectory lookup table width and height step size we choose 0.1m and
everything else remains as described above.

7.3 Quantitative Evaluation

With the previously described values we generated jump links for the test
environments which are summarized in table 1. For instance the map “cs_-
abbey” has a navigation mesh with 1207 nodes and 1196 edges. For this map
769 jump links were generated. Downward jumps often generate multiple
navigation graph edges because they can land in multiple navigation mesh
polygons. The 769 jump links result in 1312 edges that have to be added to
the navigation mesh in order to integrate the jump links into it. In this case
the number of edges in the navigation mesh was approximately doubled,
resulting in 110% more edges in the navigation mesh after the jump link
integration. On average, the edge count in the navigation mesh was doubled
for all maps.

Storing the jump links as navigation mesh nodes is useless, because then

109

7 Results

map name cs
_a

bb
ey

cs
_d

es
pe

ra
do

s

cs
_e

as
t_

bo
ro

ug
h

cs
_n

ap
ol

i

cs
_o

ffi
ce

cs
_p

ar
kh

ou
se

cs
_a

le
xa

nd
ra

2

cs
_c

or
se

navigation graph node
count 1207 1526 1353 1536 1282 1521 1018 1615

navigation graph edge
count 1196 1241 1438 1486 1196 1480 875 1525

jump link count 769 1755 830 967 660 1280 741 1340

additional graph edges 1312 3135 1374 1642 1166 2331 1294 2244

graph edge count
increase 110% 254% 96% 110% 97% 158% 148% 147%

Table 1: Quantitative analysis of the test environments.

jumps of the class jump from edge onto edge would always need exactly two
edges to be connected to the two navigation mesh polygons the jump con-
nects. This is just redundant data, one edge is always more efficient and does
not miss any data. Storing jumps generated by the Jump into Polygon Test as
nodes would always lead to one navigation mesh edge more than storing
the jump link as navigation mesh edges. Because its one edge connecting to
the jump’s takeoff polygon and the other edges connecting the target poly-
gons, otherwise for each navigation mesh polygon the virtual landing edge
intersects one navigation mesh edge is saved. The conclusion is clear that
jump links have to be navigation mesh edges, that perfectly represents the
semantic meaning of the jump link within the pathfinding logic as well as is
the most efficient data model to hold the jump information.

The doubled number of edges in the navigation mesh will obviously result
in an increased computation time of a pathfinding query. In our test envi-
ronments some areas with a high density of jump links could be identified.
Figure 78 shows such an area from the test environment “cs_desperados”.
In the middle are some clean jumps down (orange) that were found between

110

7.3 Quantitative Evaluation

the obstructing timber. On the other hand there is a rather large number
of jump links of the class jump from edge onto edge (green) on the right and
left side of the screenshot. One would intuitively suggest that fewer jumps
should be enough to adequately represent jumping capabilities in these ar-
eas. The reason for this high density of jumps around the barrels is that for
the navigation mesh to correctly envelop the barrels, a lot of small outline
edges are necessary. There is also a high number of jumps along the stairs be-
cause the railing, the wall and the timber inside of this wall result in complex
obstructions which lead to a high number of thin but optimal jump links.

Figure 78: High environment detail leading to high jump link density.

The main problem that exists is that for a practical application, the number
of jumps should probably be reduced because this high density of jumps most
likely does not yield a large benefit over an intelligently reduced number of
jumps. An extremely helpful future study would be the development of
a method to conclusively calculate a usefulness value for every jump link,

111

7 Results

enabling an easy and continuous adjustment of the detail level of the jump
link network.

7.4 Time Evaluation and Real Time Capabilities

In the previous section we saw that the generated jump links double the
number of edges of the navigation mesh. This section will take a look at how
long the generation of jump links takes and whether it is possible to update
the jump link network in real time.

map name cs
_a

bb
ey

cs
_d

es
pe

ra
do

s

cs
_e

as
t_

bo
ro

ug
h

cs
_n

ap
ol

i

cs
_o

ffi
ce

_u
nl

im
ite

d

cs
_p

ar
kh

ou
se

de
_a

le
xa

nd
ra

2

de
_c

or
se

size in meter 80×75 75×110 175×175 125×130 110×105 145×160 95×80 130×130

outer edge count 2544 3609 2737 3193 2696 3271 2355 3426

jumps tested 248 259 268 984 70 252 158 683 159 079 206 066 150 566 205 043

generated jump
links 769 1755 830 967 660 1280 741 1340

run time 17.3s 26.3s 11.7s 26.2s 14.8s 21.0s 12.9s 18.5s

Table 2: Run time for all test environments.

In table 2, the run times for all test environments are summarized. The
environment “cs_abbey” has a size of 80m × 75m with a navigation mesh
including 2544 outer edges. The Jump onto Edge Test is executed once for every
outer edge and consequently has a linear run time. The Jump into Polygon Test
has a quadratic run time because it checks for jump links between edge pairs
that are within the maximal jump range of each other. All of these 248 259
tests combined generate 769 jump links in 17.3s for “cs_abbey”.

112

7.4 Time Evaluation and Real Time Capabilities

The way the tests are designed to use an outer edge or a pair of outer
edges implies that local changes of the navigation mesh only lead to changes
of jump links that are directly connected to this part of the navigation mesh.
Because of that consistency we can examine whether an update of a part of
the jump link network is possible in real time.

trajectories per cell limit to
ta

l e
nt

ri
es

ju
m

p
lin

k
co

un
t

av
er

ag
e

tim
e

unlimited 591 213 1 755 26.3s

100 189 731 1 724 10.2s

9 18 572 1 719 6.7s

6 12 428 1 717 6.6s

3 6 239 1 716 6.5s

Table 3: Different maximum lookup table cell entries and their effects on the 268 984
executed tests for the example of the test environment “cs_desperados”.

In table 3, different restrictions on the maximum trajectory count per jump
trajectory lookup table cell are examined. As can be seen in the first line, the
lookup table has nearly 600 000 entries in all cells if the entries per cell are
not restricted. This leads to a very long run time, because even if a jump
is totally obstructed, all trajectory entries of the corresponding cell are still
tested. When reducing the trajectory entries per cell limit to 9, 6 or 3 and
checking the results in table 3, it becomes clear that this has a minimal impact
on the number of found jumps but drastically improves performance. The
reduction is done by evenly adding trajectories from the sorted list, so that

113

7 Results

there are trajectories from every section of trajectory length in the reduced
set. This way we get an even combination of high, short and intermediate
jump trajectories in the lookup table.

As presented in table 3, the number of found jumps differs only slightly
between 3, 6 and 9 entries per jump trajectory lookup table cell. Since we
want to assess the real time capabilities, we value the run time benefit over
the small chance to miss a jump link and therefore choose three entries per
lookup table cell for our real time test.

Figure 79: The real time test environment before the jump link generation.

We take a car as the dynamically moving object that enters a static state
and thus changes the surrounding navigation mesh as a test scenario. This
scenario has the size which needs to be computable in real time for our
solution to be real time capable. The test scenario is an extracted part from

114

7.4 Time Evaluation and Real Time Capabilities

the test environment “cs_east_borough”, which is rendered without jumps
in figure 79. To completely generate all jump links for this test scenario 884
test are executed, it takes 18.7 milliseconds at a 10% CPU load. This time is
short enough for humans to perceive the generation as real time and the CPU
load leaves a lot of room for parallel processes. The test scenario with the
rendered jump links is shown in figure 80. With this evaluation we conclude
that the solution satisfies the problem definition in section 3.1 by performing
the jump generation while maintaining good performance.

Figure 80: The real time test environment with the generated jump links.

115

116

8 Conclusion and Future Work

We have shown that the jump generation techniques that were developed
over the course of this diploma thesis consistently find high numbers of
jumps of good quality even in very complex environments. Furthermore
the evaluation of the experiments shows that the algorithm is fast and can
compute local changes in real time. The presented data model allows for
dynamic jump movements and integrates well with the navigation mesh
data structure. The jump trajectory lookup table as well as the jumping
capabilities of the agent can be modified to fit different fitness degrees and
behavioral scenarios.

The number of found jumps resulted on average in a doubling of the
navigation graph links. The experiments show that a significant amount of
these jumps represent redundant or comparably suboptimal connections. To
improve usage run time for a practical application in the future, it would be
extremely valuable to develop criterion of the usefulness of a jump link. For
example, a valuing function that allows the jumps to be put into a linear order
of usefulness. This would allow a seamless level of detail of the number of
actually used jump links. Considering the fact that there are many more
movement capabilities to be generated, especially in the field of climbing
and closer interaction with obstructions, a controllable reduction to the most
valuable jump data is the first step to make room for the next complexity of
movement data.

A future implementation of path smoothing for jump links in conjunction
with a practical application of character animation to visually utilize the
newly available jump data would be extremely interesting, because it most
probably would reveal more specific needs and possibilities of complex char-
acter movement in the perspective of a complete solution and not just the

117

8 Conclusion and Future Work

data generation side.

This thesis has provided virtual agents with extensive dynamic jumping
capabilities enabling them to realistically traverse complex and heavily ob-
structed terrain and to reach areas that would otherwise not be accessible.
The developed methods are an important step towards fully realistic vir-
tual agent movement and will hopefully provide a foundation for further
studies.

118

119

120

References

References

[Axe08] Ramon Axelrod. “Navigation Graph Generation in Highly Dy-
namic Worlds”. In: AI Game Programming Wisdom 4. Ed. by Steve
Rabin. Charles River Media, 2008, pp. 125–141.

[Bri12] Brink Wiki. SMART. 2012. url: http://brink.wikia.com/wiki/
SMART.

[BSL04] Paul Brobst, Ramesh Saran, and Michael Lent. “Dynamic Path
Planning and Terrain Analysis for Games”. In: Workshops at the
Twentieth National Conference on Artificial Intelligence. 2004.

[Cha11] Alex J. Champandard. Recast’ing Automatic Annotations for Player
Cover in KILLZONE 3. Apr. 2011. url: http://aigamedev.com/o
pen/review/player-cover-killzone3/ (visited on 02/13/2013).

[Cry] Crytek UK Ltd. Navigation Setup. url: http://sdk.crydev.net/
display/SDKDOC21/Navigation+Setup (visited on 02/13/2013).

[Far06] Fredrik Farnstrom. “Improving on Near-Optimality: More Tech-
niques for Building Navigation Meshes”. In: AI Game Program-
ming Wisdom 3. Ed. by Steve Rabin. Charles River Media, 2006,
pp. 113–128.

[Fen03] Walter Fendt. Der schiefe Wurf. Apr. 2003. url: http://www.walt
er-fendt.de/phys/mech/wurf.pdf.

[Fun09] John D. Funge. Artificial Intelligence For Computer Games: An In-
troduction. Peters Corp., 2009.

[Hal12] Arne-Olav Hallingstad. “Vault, Slide, Mantle - Building Brink’s
SMART System”. In: GDC 2012, May 2012.

[MS08] Colt McAnlis and James Stewart. “Intrinsic Detail in Navigation
Mesh Generation”. In: AI Game Programming Wisdom 4. Ed. by
Steve Rabin. Charles River Media, 2008, pp. 95–112.

[Mon13] Mikko Mononen. Personal interview. Jan. 2013.

121

http://brink.wikia.com/wiki/SMART
http://brink.wikia.com/wiki/SMART
http://aigamedev.com/open/review/player-cover-killzone3/
http://aigamedev.com/open/review/player-cover-killzone3/
http://sdk.crydev.net/display/SDKDOC21/Navigation+Setup
http://sdk.crydev.net/display/SDKDOC21/Navigation+Setup
http://www.walter-fendt.de/phys/mech/wurf.pdf
http://www.walter-fendt.de/phys/mech/wurf.pdf

References

[Mon11a] Mikko Mononen. Paris Game/AI Conference 2011 Slides and Demo.
July 2011. url: http://digestingduck.blogspot.de/2011/0
7/paris-gameai-conference-2011-slides-and.html (visited
on 02/13/2013).

[Mon11b] Mikkon Mononen. “Automatic annotations in Killzone 3 and
Beyond”. In: Paris Game/AI Conference 2011, 2011.

[Mon12] Mikkon Mononen. recastnavigation. 2012. url: http://code.goo
gle.com/p/recastnavigation/.

[Mül04] Rainer Müller. “Mechanik in Alltagskontexten”. In: Studienmate-
rial zu interdisziplinären Aspekten der Naturwissenschaftsdidaktiken.
Lit Verlag, 2004.

[Pat12] Amit Patel. Map representations. 2012. url: http://theory.stan
ford.edu/~amitp/GameProgramming/MapRepresentations.ht
ml (visited on 02/13/2013).

[Pea11] Craig Pearson. Brink review. 15.2.2013. May 2011. url: http://ww
w.pcgamer.com/review/brink-review/ (visited on 02/13/2013).

[Pin01] Marco Pinter. Toward More Realistic Pathfinding. 2001. url: http:
//www.gamasutra.com/view/feature/131505/toward_more_r
ealistic_pathfinding.php?print=1 (visited on 02/13/2013).

[RG04] Christopher Reed and Benjamin Geisler. “Jumping, Climbing,
and Tactical Reasoning: How to Get More Out of a Navigation
System”. In: AI Game Programming Wisdom 2. Charles River Me-
dia, 2004.

[Smi02] Patrick Smith. GDC 2002: Polygon Soup for the Programmer’s Soul:
3D Pathfinding. 2002. url: http://www.gamasutra.com/view/f
eature/131409/gdc_2002_polygon_soup_for_the_.php?prin
t=1.

[Sno00] Greg Snook. “Simplified 3D Movement and Pathfinding Using
Navigation Meshes”. In: Game Programming Gems. Ed. by Mark
DeLoura. Charles River Media, 2000, pp. 288–304.

[Son10] Sony Computer Entertainment Europe. Killzone 3. 2010. url: htt
p://www.killzone.com/kz3/de_DE/thegame-overview/campa
ign/overview.html (visited on 02/13/2013).

122

http://digestingduck.blogspot.de/2011/07/paris-gameai-conference-2011-slides-and.html
http://digestingduck.blogspot.de/2011/07/paris-gameai-conference-2011-slides-and.html
http://code.google.com/p/recastnavigation/
http://code.google.com/p/recastnavigation/
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
http://theory.stanford.edu/~amitp/GameProgramming/MapRepresentations.html
http://www.pcgamer.com/review/brink-review/
http://www.pcgamer.com/review/brink-review/
http://www.gamasutra.com/view/feature/131505/toward_more_realistic_pathfinding.php?print=1
http://www.gamasutra.com/view/feature/131505/toward_more_realistic_pathfinding.php?print=1
http://www.gamasutra.com/view/feature/131505/toward_more_realistic_pathfinding.php?print=1
http://www.gamasutra.com/view/feature/131409/gdc_2002_polygon_soup_for_the_.php?print=1
http://www.gamasutra.com/view/feature/131409/gdc_2002_polygon_soup_for_the_.php?print=1
http://www.gamasutra.com/view/feature/131409/gdc_2002_polygon_soup_for_the_.php?print=1
http://www.killzone.com/kz3/de_DE/thegame-overview/campaign/overview.html
http://www.killzone.com/kz3/de_DE/thegame-overview/campaign/overview.html
http://www.killzone.com/kz3/de_DE/thegame-overview/campaign/overview.html

References

[Spl13] Splash Damage Ltd. Brink – Splash Damage. 2013. url: http:
//www.splashdamage.com/brink (visited on 02/13/2013).

[Toz02] Paul Tozour. “Building a Near-Optimal Navigation Mesh”. In:
AI Game Programming Wisdom. Ed. by Steve Rabin. Charles River
Media, Inc., 2002, pp. 171–185. isbn: 1-58450-077-8,

[Toz08] Paul Tozour. Fixing Pathfinding Once and For All. July 2008. url:
http://www.ai-blog.net/archives/000152.html (visited on
02/13/2013).

[Toz04] Paul Tozour. “Search Space Representations”. In: AI Game Pro-
gramming Wisdom 2. Ed. by Steve Rabin. Charles River Media,
2004, pp. 85–102.

[Val13] Valve Corporation. Counter-Strike: Source. 2013. url: http://ww
w.valvesoftware.com/games/css.html (visited on 03/09/2013).

[Wav01] J.M.P. van Waveren. “The Quake III Arena Bot”. MA thesis. 2001,
2001.

[WC02] Stephen White and Christopher Christensen. “A Fast Approach
to Navigation Meshes”. In: Game Programming Gems 3. Ed. by
Dante Treglia. Charles River Media, 2002, pp. 307–320.

[Wik13] Wikipedia. Quake III Arena — Wikipedia, The Free Encyclopedia.
2013. url: \url{http://en.wikipedia.org/w/index.php?titl
e=Quake_III_Arena&oldid=535324122} (visited on 02/13/2013).

[xai] xaitment GmbH. url: http://www.xaitment.com/english/pro
ducts/xaitmap/screenshots.html.

123

http://www.splashdamage.com/brink
http://www.splashdamage.com/brink
http://www.ai-blog.net/archives/000152.html
http://www.valvesoftware.com/games/css.html
http://www.valvesoftware.com/games/css.html
\url{http://en.wikipedia.org/w/index.php?title=Quake_III_Arena&oldid=535324122}
\url{http://en.wikipedia.org/w/index.php?title=Quake_III_Arena&oldid=535324122}
http://www.xaitment.com/english/products/xaitmap/screenshots.html
http://www.xaitment.com/english/products/xaitmap/screenshots.html

124

List of Figures

List of Figures

1 Screenshot of two parts of a navigation mesh connected by a
jump link. 1

2 Screenshot of the jump links found by this thesis methods for
the test environment “cs_desperados”. 3

3 Schematic view of two navigation meshes. From [Toz04] col-
ored afterwards. 5

4 An example of geometry with its navigation mesh. From
[Mon12]. 6

5 Sketch of an agent standing inside a navigation mesh. 7
6 A navigation mesh example. From [xai]. 8
7 An example of path smoothing. From [xai]. 9
8 Screenshot of a jump object (yellow) in the CryEngine 3 devel-

opment kit. From [Cry] . 10
9 Screenshot of a jump reachability in Quake III Arena. From

[Wav01]. 12
10 Different movement capabilities supported by SMART. From

[Bri12]. 13
11 Screenshot with pullup reachabilities of Brink. From [Hal12]. . 14
12 Different jump capabilities of Killzone 3. From [Mon11b]. . . . 15
13 Schematic of a jump collision volume. From [Mon11b] 16
14 Issues with leap annotations caused by only using a single

trajectory (top view). 16
15 Issues with jump down links caused by using only a single

trajectory and a small landing height tolerance. 18
16 Restrictive jump down test at the example of a ramp. 18
17 Off-mesh connections found with the technology of Killzone

3. From [Mon11a]. 20
18 Different scenarios of wanted jump connections. Only the

jumps that are exemplary for the shown scenario are rendered
for clarity. The methods presented in this thesis actually find
several more jumps. 23

19 Schematics of a jump from edge onto edge. 28
20 Schematic of a jump from edge into polygon. 29
21 Schematic of a jump from polygon onto edge. 30

125

List of Figures

22 Schematic of a jump from polygon into polygon. 30
23 Schematic of the two platforms and several totally different

jumps between them. 31
24 The minimal jump is obstructed (red), but an alternative jump

trajectories (green) can still provide a valid jump. 34
25 Jump trajectories drawn over a grid as visualization of the

lookup table. 35
26 Sketch of pairs of polygons and the optimal jumps from the

start polygon on the left towards the other polygons on the
right. 37

27 Screenshot of a navigation mesh to illustrate the difference
between shared edges (thin blue line) and outer edges (thick
blue lines). 38

28 Reversibility of jumps. 39
29 Schematic of a jump link connecting two edges of different

navigation mesh polygons. 41
30 An unsmoothed path (purple) and a smoothed path (pink),

both traveling through a jump link (green area). 42
31 Obstructions on the left and right side leading to a partial jump

link. (Only the discussed jump link is visualized.) 43
32 Screenshot of a virtual edge (blue line at the lower end of the

jump link) for a jump from an edge into polygons. 45
33 Side view of a jump down (orange) with geometry (hatched)

and navigation mesh (blue). 48
34 The minimal jump trajectory with a velocity of 2.7m

s and an
angle of 61.6◦ −g

2·(2.7 m
s)2
·cos2(61.6◦)

· x2 + tan (61.6◦) · x 49

35 Schematic front view of the extended sampling at the right
and left end of the takeoff edge. The takeoff sample points are
the pink circles. 50

36 Perspective view of a jump down sample point distribution
(pink circles) for the takeoff edge. 50

37 Profile of a single jump collision volume. 52
38 Perspective view of a jump down with all its slices. 53
39 A slice collision area (gray) defined by a jump trajectory. . . . 55

126

List of Figures

40 Perspective view of a jump down with its unobstructed slices
(green) and its obstructed slices (red). The last tested jump col-
lision area of every slice is rendered, which means for blocked
slices that always the longest jump trajectory is rendered in red. 56

41 Renderings of two different obstruction scenarios. 58
42 Two different perspectives of dissimilar trajectories leading to

edge split. 59
43 Sketch of a takeoff edge with takeoff points (pink circles) and

their corresponding landing points. The green landing points
are marked with “Navigation Mesh” or “World Geometry”
and the red landing points are marked with “No Collision”. . 60

44 Significant height differences in the landing points resulting
in the construction of three virtual edges. 61

45 Jump up and down test resulting in a bidirectional jump link. 64
46 A jump down link (orange) and a jump up link (yellow). The

jump up cannot reach the higher spots of the jump down, so
they are both saved as directional links. 65

47 Overview flowchart of the Jump into Polygon Test. 67
48 Edge pairs of a takeoff edge (pink) and a landing edge (violet)

that are not facing each other with their normals shown as
arrows. 70

49 Two quadrangles partially overlapping each other with the
facing parts as solid lines, which are the takeoff edge (pink)
and the landing edge (violet). The clipped off parts are dashed. 73

50 Sketch of the clipping by the mapping angle. 74
51 Problems that occur when using non parallel mapping. 76
52 Parallel mapping starting at the left end points of the edges. . 77
53 Parallel mapping of the larger edge (violet) onto the smaller

edge (pink). 78
54 Mapping of the smaller edge (pink) onto the larger edge (violet). 79
55 Determination of the smaller and the larger mapping edge. . . 81
56 Sketch illustrating the necessity of the clipping by the mapping

angle. 82
57 Mapping from the smaller edge (pink) onto the larger edge

(violet) with an overhanging second mapping area. 83

127

List of Figures

58 Issue with merging jump collision volumes of one-sided map-
ping. 84

59 Two-sided mapping and its resulting mapping areas. 85
60 Combined resulting jump collision volumes correlating to fig-

ure 59. 85
61 Top view renderings of two mapping areas and the sample

points of the corresponding jump collision volumes. 87
62 Perspective view of two jump collision volumes with their slices. 89
63 Perspective rendering of a merged jump collision volume

which is based on two unobstructed jump collision volumes. . 91
64 Example why a partially obstructed jump collision volume can

not be merged with other volumes. 93
65 Overview of the Jump onto Edge Test. 94
66 A car as an example of two unconnected islands. 97
67 A jump over the railing of a fire escape as a shortcut example. 98
68 A jump as an alternative path to the stairs. 98
69 A jump through a narrow gap between the roof and the chimney.100
70 Several jump connections from one roof to another building’s

roof, granting the agent access to an otherwise unreachable area.101
71 Downward jumps allowing the agent to jump down from the

roof over the balconies onto the ground. 101
72 Jumps down through the awning showing the detail in which

jump connections are found. 102
73 A normally not traversable broken staircase can now be passed

by jumping up and down the crates. 102
74 A complex test scene, that shows specific strength of our solu-

tion by finding multiple obstacle avoiding jump links. 103
75 A comparison between the jumps found with the Killzone 3

implementation (a) and the implementation presented in this
thesis (b). 105

76 The “cs_desperados” test environment with all found jumps,
each with a different maximal jump velocity. 107

77 Two jump links generated with different width and height
intervals of the jump trajectory lookup table, illustrating the
error (b) that can occur if the cell interval is too large. 108

78 High environment detail leading to high jump link density. . . 111

128

List of Figures

79 The real time test environment before the jump link generation. 114
80 The real time test environment with the generated jump links. 115
77 Detailed Overview of the Jump into Polygon Test 135
75 Detailed Overview of the Jump onto Edge Test 139
76 Test environment “cs_abbey” 140
77 Test environment “cs_desperados” 141
78 Test environment “cs_east_borough” 142
79 Test environment “cs_napoli” 143
80 Test environment “cs_ office_unlimited” 144
81 Test environment “cs_parkhouse” 145
82 Test environment “de_alexandra2” 146
83 Test environment “de_corse” 147

129

130

Appendices

A Detailed Flow Charts

Jump into Polygon Test

Create Virtual Edge

Handling obstructions

of the downward jump

Test for collision

for the downward jump

Handling different landing points

of the downward jump

Determination of landing points

for the downward jump

Create slices between takeoff

points & landing points

based on the minimal jump

trajectory.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

every takeoff point

Create a number of takeoff

points along the extended

takeoff edge.

Mark the takeoff point with

„no Collision“.

no Collision

Mark the takeoff point with

collision with „Navigation

Mesh“.

Collision with the

Navigation Mesh

Determine the Collision

between the Minimal Jump

Trajectory starting at the

Takeoff Point.

Extend the takeoff edge to

both sides by half the

agendt’s width.

Mark the takeoff point with

collision with „World

Geometry“.

Collision with the

World Geometry

Create landing point at the

point of the collision.

Do takeoff points exsist that

have no corresponding

landing point?

same number of

takeoff points as

of landing points

more takeoff points

than landing points

Split the takeoff edge at

every gap of missing landing

points.

Continue speratly for every

new takeoff edge.

Discard all new edges with

the corresponding

takeoff points, which are

smaller than agent’s width.

Shrink the takeoff edge by

agent’s width.

all landing points

have nearly the same height

Do landing points exists,

which have a significant

height difference?
some landing points have

a significant height difference
Split the takeoff edges

between the landing points

with a height difference.

Discard all new takeoff

edges, which are smaller

than agent width.

Do slices with significant

different jump trajectories

exsist?

all jump trajectories are similar

Create a virtual landing edge

along the landing point,

which is shortened by the

agent’s width.

Create a jump link between

the real edge and the virtual

edge

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Test for collision

for the upward jump

Get first jump trajectory

from the jump trajectory

lookup table.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Continue speratly for every

new takeoff edge.

Switch takeoff and landing

edge.

Handling obstructions

of the upward jump

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

Do slices with significant

different jump trajectories

exsist?

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Continue speratly for every

new takeoff edge.

Create slices between takeoff

points & landing points

based on the gotten jump

trajectories.

all jump trajectories are similar

131

A Detailed Flow Charts

Create Virtual Edge

Handling obstructions

of the downward jump

Test for collision

for the downward jump

Handling different landing points

of the downward jump

Determination of landing points

for the downward jump

Create slices between takeoff

points & landing points

based on the minimal jump

trajectory.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

every takeoff point

Create a number of takeoff

points along the extended

takeoff edge.

Mark the takeoff point with

„no Collision“.

no Collision

Mark the takeoff point with

collision with „Navigation

Mesh“.

Collision with the

Navigation Mesh

Determine the Collision

between the Minimal Jump

Trajectory starting at the

Takeoff Point.

Extend the takeoff edge to

both sides by half the

agendt’s width.

Mark the takeoff point with

collision with „World

Geometry“.

Collision with the

World Geometry

Create landing point at the

point of the collision.

Do takeoff points exsist that

have no corresponding

landing point?

same number of

takeoff points as

of landing points

more takeoff points

than landing points

Split the takeoff edge at

every gap of missing landing

points.

Continue speratly for every

new takeoff edge.

Discard all new edges with

the corresponding

takeoff points, which are

smaller than agent’s width.

Shrink the takeoff edge by

agent’s width.

all landing points

have nearly the same height

Do landing points exists,

which have a significant

height difference?
some landing points have

a significant height difference
Split the takeoff edges

between the landing points

with a height difference.

Discard all new takeoff

edges, which are smaller

than agent width.

Do slices with significant

different jump trajectories

exsist?

all jump trajectories are similar

Create a virtual landing edge

along the landing point,

which is shortened by the

agent’s width.

Create a jump link between

the real edge and the virtual

edge

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Test for collision

for the upward jump

Get first jump trajectory

from the jump trajectory

lookup table.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Continue speratly for every

new takeoff edge.

Switch takeoff and landing

edge.

Handling obstructions

of the upward jump

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

Do slices with significant

different jump trajectories

exsist?

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Continue speratly for every

new takeoff edge.

Create slices between takeoff

points & landing points

based on the gotten jump

trajectories.

all jump trajectories are similar

132

Create Virtual Edge

Handling obstructions

of the downward jump

Test for collision

for the downward jump

Handling different landing points

of the downward jump

Determination of landing points

for the downward jump

Create slices between takeoff

points & landing points

based on the minimal jump

trajectory.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

every takeoff point

Create a number of takeoff

points along the extended

takeoff edge.

Mark the takeoff point with

„no Collision“.

no Collision

Mark the takeoff point with

collision with „Navigation

Mesh“.

Collision with the

Navigation Mesh

Determine the Collision

between the Minimal Jump

Trajectory starting at the

Takeoff Point.

Extend the takeoff edge to

both sides by half the

agendt’s width.

Mark the takeoff point with

collision with „World

Geometry“.

Collision with the

World Geometry

Create landing point at the

point of the collision.

Do takeoff points exsist that

have no corresponding

landing point?

same number of

takeoff points as

of landing points

more takeoff points

than landing points

Split the takeoff edge at

every gap of missing landing

points.

Continue speratly for every

new takeoff edge.

Discard all new edges with

the corresponding

takeoff points, which are

smaller than agent’s width.

Shrink the takeoff edge by

agent’s width.

all landing points

have nearly the same height

Do landing points exists,

which have a significant

height difference?
some landing points have

a significant height difference
Split the takeoff edges

between the landing points

with a height difference.

Discard all new takeoff

edges, which are smaller

than agent width.

Do slices with significant

different jump trajectories

exsist?

all jump trajectories are similar

Create a virtual landing edge

along the landing point,

which is shortened by the

agent’s width.

Create a jump link between

the real edge and the virtual

edge

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Test for collision

for the upward jump

Get first jump trajectory

from the jump trajectory

lookup table.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Continue speratly for every

new takeoff edge.

Switch takeoff and landing

edge.

Handling obstructions

of the upward jump

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

Do slices with significant

different jump trajectories

exsist?

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Continue speratly for every

new takeoff edge.

Create slices between takeoff

points & landing points

based on the gotten jump

trajectories.

all jump trajectories are similar

133

A Detailed Flow Charts

Create Virtual Edge

Handling obstructions

of the downward jump

Test for collision

for the downward jump

Handling different landing points

of the downward jump

Determination of landing points

for the downward jump

Create slices between takeoff

points & landing points

based on the minimal jump

trajectory.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

every takeoff point

Create a number of takeoff

points along the extended

takeoff edge.

Mark the takeoff point with

„no Collision“.

no Collision

Mark the takeoff point with

collision with „Navigation

Mesh“.

Collision with the

Navigation Mesh

Determine the Collision

between the Minimal Jump

Trajectory starting at the

Takeoff Point.

Extend the takeoff edge to

both sides by half the

agendt’s width.

Mark the takeoff point with

collision with „World

Geometry“.

Collision with the

World Geometry

Create landing point at the

point of the collision.

Do takeoff points exsist that

have no corresponding

landing point?

same number of

takeoff points as

of landing points

more takeoff points

than landing points

Split the takeoff edge at

every gap of missing landing

points.

Continue speratly for every

new takeoff edge.

Discard all new edges with

the corresponding

takeoff points, which are

smaller than agent’s width.

Shrink the takeoff edge by

agent’s width.

all landing points

have nearly the same height

Do landing points exists,

which have a significant

height difference?
some landing points have

a significant height difference
Split the takeoff edges

between the landing points

with a height difference.

Discard all new takeoff

edges, which are smaller

than agent width.

Do slices with significant

different jump trajectories

exsist?

all jump trajectories are similar

Create a virtual landing edge

along the landing point,

which is shortened by the

agent’s width.

Create a jump link between

the real edge and the virtual

edge

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Test for collision

for the upward jump

Get first jump trajectory

from the jump trajectory

lookup table.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Continue speratly for every

new takeoff edge.

Switch takeoff and landing

edge.

Handling obstructions

of the upward jump

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

Do slices with significant

different jump trajectories

exsist?

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Continue speratly for every

new takeoff edge.

Create slices between takeoff

points & landing points

based on the gotten jump

trajectories.

all jump trajectories are similar

134

Create Virtual Edge

Handling obstructions

of the downward jump

Test for collision

for the downward jump

Handling different landing points

of the downward jump

Determination of landing points

for the downward jump

Create slices between takeoff

points & landing points

based on the minimal jump

trajectory.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

every takeoff point

Create a number of takeoff

points along the extended

takeoff edge.

Mark the takeoff point with

„no Collision“.

no Collision

Mark the takeoff point with

collision with „Navigation

Mesh“.

Collision with the

Navigation Mesh

Determine the Collision

between the Minimal Jump

Trajectory starting at the

Takeoff Point.

Extend the takeoff edge to

both sides by half the

agendt’s width.

Mark the takeoff point with

collision with „World

Geometry“.

Collision with the

World Geometry

Create landing point at the

point of the collision.

Do takeoff points exsist that

have no corresponding

landing point?

same number of

takeoff points as

of landing points

more takeoff points

than landing points

Split the takeoff edge at

every gap of missing landing

points.

Continue speratly for every

new takeoff edge.

Discard all new edges with

the corresponding

takeoff points, which are

smaller than agent’s width.

Shrink the takeoff edge by

agent’s width.

all landing points

have nearly the same height

Do landing points exists,

which have a significant

height difference?
some landing points have

a significant height difference
Split the takeoff edges

between the landing points

with a height difference.

Discard all new takeoff

edges, which are smaller

than agent width.

Do slices with significant

different jump trajectories

exsist?

all jump trajectories are similar

Create a virtual landing edge

along the landing point,

which is shortened by the

agent’s width.

Create a jump link between

the real edge and the virtual

edge

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Test for collision

for the upward jump

Get first jump trajectory

from the jump trajectory

lookup table.

Free of Collision

Is slice free of

obstructions?

Get next trajectory from the

jump trajectory lookup

table.

Obstruced

every pair of takeoff

point and landing point Calculate jump width and

jump height between the

takeoff point and the

landing point.

Create a slice based on the

new trajectory.

Continue speratly for every

new takeoff edge.

Switch takeoff and landing

edge.

Handling obstructions

of the upward jump

Split the takeoff edge, the

new edges are seperated by

slices which are totally

obstructed.

Do slices with significant

different jump trajectories

exsist?

Split the edge, so that the

new edges consist of similar

jump trajectorys.

jump trajectories

are dissimilar

Extent new edges by the

agent’s width with new

takeoff and landing points.

Connect the new takeoff and

landing points by slices with

similar jump trajectories as

neighbours

Test the new slices for

obstructions.

Shrink the edge to the

extent of collision free slices.

Discard all new takeoff

edges, which are smaller

than agent’s width.

Continue speratly for every

new takeoff edge.

Shrink all edges by all

takeoff points, which are not

marked with Navigation

Mesh“.

Continue speratly for every

new takeoff edge.

Create slices between takeoff

points & landing points

based on the gotten jump

trajectories.

all jump trajectories are similar

Figure 77: Detailed Overview of the Jump into Polygon Test

135

A Detailed Flow Charts

Jump onto Edge Test

Merging Jump Areas

Testing Colision

Mapping Edge to Edge

Preprocessing of the edges

the larger mapping

edge is completly covered

with mapping areas

Are Takeoff and Landing

Edge parallel?

parallel Cut both edges to their

facing parts.

non parallel

Extend both edges to both

sides by half the agent’s
width.

Determination of the smaller

mapping edge.

no jump link.
Do the edges face each

other?
no

yes

Compute the number of

sample point for this

mapping.

Create a new mapping area.

Create takeoff sample points.

Compute corresponding

landing points.

all jump collsions

volumes

Test slice for collsion.

Create slice.

all pairs of takeoff and

landing points

a slice is free of

obstructions or no more

alternative jump trajectories

are available

Clipping by Mapping Angle.

Convert all mappinf areas to

uncomplete jump collision

volumes.

Merging Jump Areas

136

Merging Jump Areas

Testing Colision

Mapping Edge to Edge

Preprocessing of the edges

the larger mapping

edge is completly covered

with mapping areas

Are Takeoff and Landing

Edge parallel?

parallel Cut both edges to their

facing parts.

non parallel

Extend both edges to both

sides by half the agent’s
width.

Determination of the smaller

mapping edge.

no jump link.
Do the edges face each

other?
no

yes

Compute the number of

sample point for this

mapping.

Create a new mapping area.

Create takeoff sample points.

Compute corresponding

landing points.

all jump collsions

volumes

Test slice for collsion.

Create slice.

all pairs of takeoff and

landing points

a slice is free of

obstructions or no more

alternative jump trajectories

are available

Clipping by Mapping Angle.

Convert all mappinf areas to

uncomplete jump collision

volumes.

Merging Jump Areas

137

A Detailed Flow Charts

Merging Jump Areas

Testing Colision

Mapping Edge to Edge

Preprocessing of the edges

the larger mapping

edge is completly covered

with mapping areas

Are Takeoff and Landing

Edge parallel?

parallel Cut both edges to their

facing parts.

non parallel

Extend both edges to both

sides by half the agent’s
width.

Determination of the smaller

mapping edge.

no jump link.
Do the edges face each

other?
no

yes

Compute the number of

sample point for this

mapping.

Create a new mapping area.

Create takeoff sample points.

Compute corresponding

landing points.

all jump collsions

volumes

Test slice for collsion.

Create slice.

all pairs of takeoff and

landing points

a slice is free of

obstructions or no more

alternative jump trajectories

are available

Clipping by Mapping Angle.

Convert all mappinf areas to

uncomplete jump collision

volumes.

Merging Jump Areas

138

Merging Jump Areas

Testing Colision

Mapping Edge to Edge

Preprocessing of the edges

the larger mapping

edge is completly covered

with mapping areas

Are Takeoff and Landing

Edge parallel?

parallel Cut both edges to their

facing parts.

non parallel

Extend both edges to both

sides by half the agent’s
width.

Determination of the smaller

mapping edge.

no jump link.
Do the edges face each

other?
no

yes

Compute the number of

sample point for this

mapping.

Create a new mapping area.

Create takeoff sample points.

Compute corresponding

landing points.

all jump collsions

volumes

Test slice for collsion.

Create slice.

all pairs of takeoff and

landing points

a slice is free of

obstructions or no more

alternative jump trajectories

are available

Clipping by Mapping Angle.

Convert all mappinf areas to

uncomplete jump collision

volumes.

Merging Jump Areas

Figure 75: Detailed Overview of the Jump onto Edge Test

139

B Test Environment from Counter-Strike: Source

B Test Environment from Counter-Strike:

Source

(a) With Textures

(b) With jump links

Figure 76: Test environment “cs_abbey”

140

(a) With Textures

(b) With jump links

Figure 77: Test environment “cs_desperados”

141

B Test Environment from Counter-Strike: Source

(a) With Textures

(b) With jump links

Figure 78: Test environment “cs_east_borough”

142

(a) With Textures

(b) With jump links

Figure 79: Test environment “cs_napoli”

143

B Test Environment from Counter-Strike: Source

(a) With Textures

(b) With jump links

Figure 80: Test environment “cs_ office_unlimited”

144

(a) With Textures

(b) With jump links

Figure 81: Test environment “cs_parkhouse”

145

B Test Environment from Counter-Strike: Source

(a) With Textures

(b) With jump links

Figure 82: Test environment “de_alexandra2”

146

(a) With Textures

(b) With jump links

Figure 83: Test environment “de_corse”

147

C Interview

C Interview

Sara Budde: I am Sara Budde and I am currently studying computing sci-
ence at the Humboldt-Universität zu Berlin, where I am working on my
diploma thesis about automatic jump link generation. Mr. Mononen,
would you please introduce yourself and briefly state your expertise to
explain to the reader why you are qualified for the topic of jump link
generation.

Mikko Mononen: My name is Mikko Mononen, I’m currently chief product
officer at Tinkercad. I have previously worked on game AI at Crytek
GmbH, I’ve written an open source navigation mesh toolkit Recast &
Detour, which is currently being used in many AAA titles at companies
such as Guerrilla Games, Insomniac Games, Unity 3D, Epic Games. One
part of my research on game navigation included automatic generation of
jump link annotation and automatic cover location detection.

Sara Budde: You implemented an automatic jump link annotation at Guer-
rilla Games for the title Killzone 3 which you presented at the “Paris
Game/AI Conference 2011”. Do you know of any other solutions for
automatic jump link annotation in 3D environments?

Mikko Mononen: I have not seen any published articles on the subject. I
think the most cited and most relevant is maybe the Quake III bot thesis
from J.M.P. van Waveren 1. Brink’s SMART navigation system had similar
ideas too 2, as well as Left4Dead’s zombie climbing 3.
In addition to that, there is extensive research on using existing motion

1Quake III thesis: http://dev.johnstevenson.co.uk/bots/
20585341-The-Quake-III-Arena-Bot.pdf

2Vault, Slide, Mantle - Building Brink’s SMART System: http://www.splashdamage.com/
publications

3http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_
booth.pdf

148

http://dev.johnstevenson.co.uk/bots/20585341-The-Quake-III-Arena-Bot.pdf
http://dev.johnstevenson.co.uk/bots/20585341-The-Quake-III-Arena-Bot.pdf
http://www.splashdamage.com/publications
http://www.splashdamage.com/publications
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf
http://www.valvesoftware.com/publications/2009/ai_systems_of_l4d_mike_booth.pdf

patterns to find the best possible “move” while following a path. That
method is able to find jumps if the example corpus has such behavior.
One example of such a system Is James Kuffner’s Behavior Planning for
Character Animation 4. The research in this field spans from robotics to
animation, but is generally too taxing to real time game use.
As far as I know, there are two commercial game engines which do auto-
matic jump link detection. Unreal Engine has concepts of vaults, and their
automatic navigation mesh generation system is able to generate them 5.
Unity3D has automatic jump link detection which borrows ideas from my
Paris presentation but actually uses physic engine collision detection tests
to sample the validity.

Sara Budde: Your jump test consists of one test for a jump over an obstacle/-
gap and one test for a jump down. Each test is based on one fixed jump
trajectory. Is there a specific reason for that constraint? Practical reasons
like implementation complexity, animation system issues or something
completely different?

Mikko Mononen: Your assumption is correct. The AI navigation is generally
quite boring to look at, and often one of the main reasons to add jump
links is to make the AI behavior more believable and interesting. One
way to look at the navigation problem is to divide the AI behavior into
actions in a context. I wrote an article about it long time ago: http:
//aigamedev.com/open/article/structure-action-game-ai/

Actions and contexts are the contract between AI coders, technical artists,
artist, level designers and animators. One action-context pair could be
“vault over 90cm high, and 50cm wide obstacle”. That gives instructions
to all disciplines how to approach the problem, and in it turn gives the AI
programmer the information to implement the trajectory sampling. That

4http://graphics.cs.cmu.edu/projects/behavior_planning/
5http://udn.epicgames.com/Three/AIAndNavigationHome.html

149

http://aigamedev.com/open/article/structure-action-game-ai/
http://aigamedev.com/open/article/structure-action-game-ai/
http://graphics.cs.cmu.edu/projects/behavior_planning/
http://udn.epicgames.com/Three/AIAndNavigationHome.html

C Interview

action-context pair can also contain tolerances, for example the landing
position could potentially have +-20cm deviation and the obstacle width
could have -+10cm deviation. There are many ways to parametrize the
animation to fit into that space, and it also gives more leeway for the artist
and level designers to build levels and also improves the cases where the
sampling will work.
Once the production team has a contract like the action-context pair, it
is possible to build a rather generic system where AI annotation can be
automatically detected from the environment. In case of jumping, it is a
matter of finding locations and free trajectories, but for example in case of
cover locations, you might want to check for solid walls, too. Usually AI
programmers and technical artists work together with game designers to
build the building blocks for such tests.

Sara Budde: As I understand, the different professions within a game devel-
opment context have to agree on everything done with world annotation,
so it can be properly integrated into the final game. When the world
annotation becomes too complex, this work effort gets too heavy for an
individual title to be profitable. This leaves me with the question, why the
current AI Engines show no sign of development towards more complex
world annotation.

Mikko Mononen: This is a great question! :-) From technical standpoint the
problem is that all the technologies need to play together and there are
very few common nominators. The common nominator from navigation
system is some kind of jump link, a link in the A* graph that has some
extra properties.
In order to create good middleware product in that space, you need to
combine AI, animation and physics. Havok gets pretty close (http://
www.havok.com/products/ai). In addition to that you will need to fit that
system into a game studio’s workflow. The huge problem there is that all

150

http://www.havok.com/products/ai
http://www.havok.com/products/ai

middleware is one generation behind the state of the art in animation (and
maybe AI), and many games have very specific needs, in which case you
will need to add custom code into the pipeline and that is often hard for
middleware providers.

Sara Budde: Thank you very much for this interview Mr. Mononen, and the
insights it has provided.

Statement of authorship

I declare that I completed this thesis on my own and that information which
has been directly or indirectly taken from other sources has been noted as
such. Neither this nor a similar work has been presented to an examination
committee.

Berlin, March 24, 2013 .

	1 Introduction
	2 State of the Art
	2.1 Navigation Mesh
	2.2 Manual Annotation
	2.3 Movement-Based Expansion Method
	2.4 Jumps for Quake III Arena Bots
	2.5 Smooth Movement Across Random Terrain in Brink
	2.6 Jump Annotations for Killzone 3

	3 Problem Definition
	3.1 Automated Jump Link Generation
	3.2 Jump Links with Variable Jump Trajectories
	3.3 Integration of the Jump Links into the Navigation Mesh

	4 Analysis of the Jump Problem Space
	4.1 Introduction
	4.2 Jump Classification
	4.3 Definition of the Optimal Jump
	4.4 Jump Trajectories and their Lookup Table
	4.5 Study of the Search Space
	4.6 Symmetry and Reversibility of Jumps
	4.7 Smart Jump Data Model

	5 Jump into Polygon Test
	5.1 Introduction
	5.2 Determination of the Landing Points
	5.3 Jump Collision Volume
	5.4 Handling Obstructions
	5.5 Handling Different Landing Points
	5.6 Jump Link Generation
	5.7 The Upwards Jump Test
	5.8 Summary

	6 Jump onto Edge
	6.1 Introduction
	6.2 Preprocessing of the Two Edges
	6.3 Mapping
	6.3.1 Mapping of One Edge onto the Other
	6.3.2 Domain and Codomain for the Mapping
	6.3.3 Two-Sided Mapping

	6.4 Jump Collision Volume Test
	6.5 Postprocessing of the Jump Collision Volumes
	6.5.1 Merging of Jump Collision Volumes
	6.5.2 Handling Obstructed Slices
	6.5.3 Handling Significantly Different Jump Trajectories

	6.6 Summary

	7 Results
	7.1 A Robust Solution for an Optimized Search Space
	7.2 Study of Jump Link Generation Configurations
	7.3 Quantitative Evaluation
	7.4 Time Evaluation and Real Time Capabilities

	8 Conclusion and Future Work
	References
	List of Figures
	Appendices
	A Detailed Flow Charts
	B Test Environment from Counter-Strike: Source
	C Interview

